Math, asked by xxitssagerxx, 20 hours ago


\huge\sf\fbox\purple{   \:  \: Question  \:  \:  }

Zeroes of p(x) = x^2- 27 are:
a. ±9√3
b. ±3√3
c. ±7√3
d. None of the above

★ Moderators \\ \  \textless \ br /\  \textgreater \ ★ Br@inly stars and teacher \\ \  \textless \ br /\  \textgreater \ ★ Others best users ​

Answers

Answered by Anonymous
18

Answer:

Given :-

  • x² - 27.

To Find :-

  • What are the zeroes of the polynomial.

Solution :-

Given Equation :

\mapsto \sf\bold{\purple{x^2 - 27}}

\implies \sf P(x) =\: x^2 - 27

So, let P(x) = 0 we get,

\implies \bf x^2 - 27 =\: 0

\implies \sf x^2 - 27 =\: 0

\implies \sf x^2 =\: 27

\implies \sf x =\: ±\: \sqrt{27}

\implies \sf x =\: ±\: 3\sqrt{3}

\implies \sf\bold{\red{x =\: ±\: 3\sqrt{3}}}

\therefore The zeroes of the polynomial is ± 33.

Hence, the correct options is (b) ± 33 .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

\clubsuit Sum Of Zeroes Formula :

\longrightarrow \sf\boxed{\bold{\pink{Sum\: Of\: Zeroes\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}

\clubsuit Product Of Zeroes Formula :

\longrightarrow \sf\boxed{\bold{\pink{Product\: Of\: Zeroes\: (\alpha\beta) =\: \dfrac{c}{a}}}}

\clubsuit Quadratic Polynomial Formula :

\longrightarrow \sf\boxed{\bold{\pink{x^2 - (\alpha + \beta)x + \alpha\beta}}}\\

Answered by ayushikushwaha53
1

Answer:

Solution is in the attachment.

Hope it will help you mark me as brainliest plz don't forget to give me thanks and also rate my answer.

Thank u..

Attachments:
Similar questions