Math, asked by llXxDramaticKingxXll, 21 hours ago

 \huge\sf \orange{Question}

 \orange{ \bigstar}{\underline{\boxed{\mathsf{\frac{ \sqrt{11 - 3} }{ \sqrt{11 + 2} } = a - b \sqrt{11} }}}} \pink{\bigstar}

Answers

Answered by XxDashingGirlxX
5

\begin{gathered}\\ \sf\longmapsto \frac{ \sqrt{11}  - 3}{ \sqrt{11}  + 2}\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{ \sqrt{11}  + 3}{ \sqrt{11} + 2 }  \times  \frac{ \sqrt{11}  - 2}{ \sqrt{11} - 2 } \end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{( \sqrt{11} - 3) \times ( \sqrt{11} - 2)  }{( \sqrt{11}  + 2) \times ( \sqrt{11}  - 2)}\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{11 - 2 \sqrt{11} - 3 \sqrt{11}  + 6 }{11 - 4} \end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{17 - 5 \sqrt{11} }{7}\end{gathered}

Hence, The values of A and B are 17 and 5 respectively..

Bestu, answer fraction mai aayega.

Answered by OoAryanKingoO78
2

Answer:

♀️Hey mate☺️

\begin{gathered}\\ \sf\longmapsto \frac{ \sqrt{11}  - 3}{ \sqrt{11}  + 2}\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{ \sqrt{11}  + 3}{ \sqrt{11} + 2 }  \times  \frac{ \sqrt{11}  - 2}{ \sqrt{11} - 2 } \end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{( \sqrt{11} - 3) \times ( \sqrt{11} - 2)  }{( \sqrt{11}  + 2) \times ( \sqrt{11}  - 2)}\end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{11 - 2 \sqrt{11} - 3 \sqrt{11}  + 6 }{11 - 4} \end{gathered}

\begin{gathered}\\ \sf\longmapsto \frac{17 - 5 \sqrt{11} }{7}\end{gathered}

  • Hence, The values of A and B are 17 and 5 respectively..

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Your question is wrong please check it correctly :)

Similar questions