Physics, asked by TheMoonlìghtPhoenix, 4 months ago

\huge{\sf{\pink{Ello \ Homosapiens!}}}
Physics Question, appeared in GCSE too!
Prove that when 'x' grams of steam at 100°C is mixed with 'y' grams of ice at 0°C and allowed to attain thermal equilibrium, the final temperature of mixture is \sf{\theta = \dfrac{80(8x-y)}{x-y}}.
\bf{\purple{Don't \ spam \ , Happy \ Learning!}}
\rm{\red{Be \ Brainly!}}

Answers

Answered by Qᴜɪɴɴ
48

Correct Question:

Prove that when 'x' grams of steam at 100°C is mixed with 'y' grams of ice at 0°C and allowed to attain thermal equilibrium, the final temperature of mixture is \sf{\theta = {\red{\bold{\dfrac{80(8x-y)}{x+y}}}}}

━━━━━━━━━━━━━━━━━━

Given:

  • Mass of steam= x gram
  • Mass of ice = y gram
  • Temperature of steam = 100°C
  • Temperature of ice = 0°C
  • Attained thermal equilibrium!

━━━━━━━━━━━━━━━

Need to Prove:

Final temperature =  \dfrac{80(8x - y)}{(x + y)}

━━━━━━━━━━━━━━━

Let,

  • L= Latent heat
  • Cp= Specific heat
  • Q1 = heat lost by stem
  • Q2= heat gained by ice
  • T= Final temperature

━━━━━━━━━━━━━━━

Solution:

The amount of heat lost when the stem cools is:

Q_{1}= x L_{vapour} + x Cp (100 -T)

Put the values!

\purple{\boxed{\bold{Q_{1} = 2254x + 4.18 x (100 - T)--i}}}

━━━━━━━━━━━━━━━

The amount of heat gained when the ice melts is:

Q_{2} = y L_{freeze} + yCp (T -0)

Put values!

\purple{\boxed{\bold{Q_{2} = 334y + 4.18y T--ii}}}

━━━━━━━━━━━━━━━

We know,

Heat lost by the steam = Heat gained by the ice.

Equalizing equation i and ii we get,

2254x + 4.18x (100 - T) = 334y + 4.18y T

\implies 2254x + 418x - 4.18x T = 334y + 4.18y T

\implies 2672x - 4.18x T = 334y+ 4.18y T

 \implies 2672x - 334y = 4.18x T + 4.18y T

\implies 334 (8x-y) = 4.18 T (x + y)

\red{\large{\bold{\boxed{\implies T =  \dfrac{80(8x-y)}{x + y}}}}}


TheMoonlìghtPhoenix: Thank you Diamond!
Answered by rocky200216
36

\huge\bf{\underline{\color{indigo}GIVEN}} \\

  • \bf\red{Amount~of~steam~} = x grams

  • \bf\red{Amount~of~ice~} = y grams

\bf\:~~~~~\circ 'x' grams of steam at 100°C is mixed with 'y' grams of ice at 0°C .

__________________________

\huge\bf{\underline{\color{orange}CONCEPT}} \\

\mathbb{\underline{LAW\:OF\:MIXTURES\::\:\atop{PRINCIPLE\:OF\:CALORIMETRY\:}}} \\

When two bodies at different temperatures are mixed, heat will be transferred from body at higher temperature to a body at lower temperature till both acquire same temperature . The body at higher temperature releases heat while body at lower temperature absorbs it, so that

\pink\bullet\:\bf{\boxed{\color{mediumspringgreen}HEAT~LOST~=~HEAT~GAINED~}} \\

Principle of Calorimetry represents the law of conservation of heat energy .

__________________________

 \\ \huge\bf{\underline{\color{olive} SOLUTION}} \\

Let,

  • \bf\blue{Final\: temperature\:=\:\theta\:} \\

CASE - 1 ;-

ᗕᗒ Heat required by ice to raised it's temperature to θ°C,

\bf{{\boxed{0°C~(ice)}}\:\underset{Q_1}{\longrightarrow}\:{\boxed{0°C~(water)}}\:\underset{Q_2}{\longrightarrow}\:{\boxed{{\theta}°C~(water)}}\:} \\

\bigstar\:\bf\gray{Q_1\:=\:m_{ice}\:L_{ice}\:} \\

Where,

  • \bf{\red{L_{ice}~=~Latent~heat~of~fusion~for~ice}}~\atop{=~80~ cal/g}

 \rm{:\implies\:Q_1\:=\:y\times{80}\:} \\

\bf{:\implies\:Q_1\:=\:80y\:Cal} \\

And

\bigstar\:\bf\gray{Q_2\:=\:m_{ice}\:C_{water}\:\triangle{\theta}\:} \\

Where,

  • \bf{\red{C_{water}\:=\: Specific\:heat\:of\:water}}~\atop{=~1 ~cal/g.°C}

  • \bf\red{\triangle{\theta}\:=\: Change\:in\: temperature\:} \\

\rm{:\implies\:Q_2\:=\:y\times{1}\times{(\theta\:-\:0)}\:} \\

\rm{:\implies\:Q_2\:=\:y\times{\theta}\:} \\

\bf{:\implies\:Q_2\:=\:y{\theta}\:Cal} \\

So total heat(Q) required by ice is,

\bf{Q_{ice}\:=\:Q_1\:+\:Q_2\:} \\

\bf\green{Q_{ice}\:=\:(80y\:+\:y{\theta})\:Cal\:} \\

CASE - 2 ;-

ᗕᗒ Heat given by steam when condensed,

\bf{{\boxed{100°C~(steam)}}\:\underset{Q_1}{\longrightarrow}\:{\boxed{100°C~(water)}}\:\underset{Q_2}{\longrightarrow}\:{\boxed{{\theta}°C~(water)}}\:} \\

\bigstar\:\bf\gray{Q_1\:=\:m_{steam}\:L_{water}\:} \\

Where,

  • \bf{\red{L_{water}~=~Latent~heat~of~water}}~\atop{=~540~ cal/g}

\rm{:\implies\:Q_1\:=\:x\times{540}\:} \\

\bf{:\implies\:Q_1\:=\:540x\:Cal} \\

And

\bigstar\:\bf\gray{Q_2\:=\:m_{steam}\:C_{water}\:\triangle{\theta}\:} \\

\rm{:\implies\:Q_2\:=\:x\times{1}\times{(100\:-\:{\theta})}\:} \\

\rm{:\implies\:Q_2\:=\:x\times{(100\:-\:{\theta})}\:} \\

\bf{:\implies\:Q_2\:=\:(100x\:-\:x{\theta})\:Cal} \\

So total heat(Q) given by steam is,

\bf{Q_{steam}\:=\:Q_1\:+\:Q_2\:} \\

\rm{Q_{steam}\:=\:540x\:+\:(100x\:-\:x{\theta})\:} \\

\bf\green{Q_{steam}\:=\:(640x\:-\:x{\theta})\:Cal} \\

☯︎ Now, according to the Principle of Calorimetry,

\huge\red\checkmark \bf{Q_{steam}\:=\:Q_{ice}\:} \\

\longmapsto\:\rm{640x\:-\:x{\theta}\:=\:80y\:+\:y{\theta}\:} \\

\longmapsto\:\rm{640x\:-\:80y\:=\:y{\theta}\:+\:x{\theta}\:} \\

\longmapsto\:\rm{(y\:+\:x)\:{\theta}\:=\:80\:(8x\:-\:y)} \\

\longmapsto\:\rm{{\theta}\:=\:\dfrac{80\:(8x\:-\:y)}{y\:+\:x}\:} \\

\pink\longmapsto\:\bf{\purple{{\theta}\:=\:\dfrac{80\:(8x\:-\:y)}{x\:+\:y}\:}}~~~~{(Hence~proved)} \\


TheMoonlìghtPhoenix: Tysm♡
Similar questions