Math, asked by ItzShizuka50, 19 hours ago


 \huge \sf {QUESTION:}
In the attacchment given above:
____________________________
☆Best users
☆Proper answer
 \huge \sf  \bigstar{no \: spam: }




Attachments:

Answers

Answered by Cynefin
91

Required Answer:-

A quadrilateral can be divided into two triangles and if you know how to calculate the areas of traingles, we can add them to get the area of the quadrilateral.

Here:

  • Join the diagonal BD.
  • We will get ∆DAB and ∆DBC
  • ∆DAB is a right angled triangle whose perpendicular and base are given. So, we can find the area by 1/2 × base × height formula.
  • ∆DBC is a scalene triangle whose all sides are given. We can use the √s(s-a)(s-b)(s-c) formula.

Let's start..

Area of quadrilateral ABCD = Area of ∆DAB + Area of ∆DBC.

Area of DAB:

= 1/2 × b × p

= 1/2 × 12 cm × 5 cm

= 30 cm²

Area of DBC:

Here, s = (13 + 14 + 15)/2 cm = 21 cm

Putting the values in formula,

= √{s(s-a)(s-b)(s-c)}

= √{21(21-13)(21-14)(21-15) cm²

= √(21 × 8 × 7 × 6) cm²

= √(3 × 7 × 2³ × 7 × 2 × 3) cm²

= 3 × 7 × 2² cm²

= 84 cm²

Hence,

Area of quadrilateral ABCD

= 30 cm² + 84 cm²

= 114 cm²

Note:-

  • The diagonal BD is the hypotenuse of ∆DAB. Find the length using Pythagoras theorem.
  • s is the semiperimeter i.e. perimeter/2.
  • a,b,c in √{s(s-a)(s-b)(s-c)} are the sides of the scalene triangle.

Attachments:
Answered by Anonymous
82

\large\underline{\underline{\maltese{\red{\pmb{\sf{ \: Given :-}}}}}}

  • ➙ Figure in the attachment .

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\gray{\pmb{\sf{ \: To \:  Find :-}}}}}}

  • ➙ Area the the given figure .(i.e, Quadrilateral)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\purple{\pmb{\sf{ \: Solution :-}}}}}}

How to Solve :

We will apply a diagonal BD .After the the figure will be divided into 2 adjacent triangles namely DAB and DCB . We will find the area of the both triangles and add them .We will get the Area of the Quadrilateral.

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Formula Used :

Area :

\large\blue{\bigstar{\underline{\boxed{\red{\sf{Area {\small_{(Triangle)}} = \dfrac{1}{2} \times b \times h}}}}}}

Area :

\large\blue{\bigstar{\underline{\boxed{\red{\sf{Area{\small_{(Triangle)}} = \sqrt{s ( s - a)(s - b)(s - c)}}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Area of Triangle DAB :

\qquad{\twoheadrightarrow{\sf{Area = \dfrac{1}{2} \times b \times h}}}

\qquad{\twoheadrightarrow{\sf{ \:  \:  \:  \:  \: \dfrac{1}{2} \times 12 \times 5}}}

\qquad{\twoheadrightarrow{\sf{ \:  \:  \:  \:  \: \dfrac{1}{\cancel2} \times \cancel{60}}}}

\large{\red{:\longmapsto{\green{\underline{\sf{ Triangle  \: DAB = 30 cm}}}}}}

Area of Triangle DCB :

Semi - Perimeter :

\qquad{\twoheadrightarrow{\sf{S = \dfrac{a + b + c}{2} }}}

\qquad{\twoheadrightarrow{\sf{S = \dfrac{13 + 14+ 15}{2} }}}

\qquad{\twoheadrightarrow{\sf{S = \dfrac{42}{2} }}}

\qquad{\twoheadrightarrow{\sf{S = \cancel\dfrac{42}{2} }}}

\qquad{\twoheadrightarrow\orange{\sf{S =21 \: cm }}}

Area :

\qquad{\twoheadrightarrow{\sf{Area = \sqrt{s ( s - a)(s - b)(s - c)}}}}

\qquad{\twoheadrightarrow{\sf{Area = \sqrt{21( 21- 13)(21 - 14)(21- 15)}}}}

\qquad{\twoheadrightarrow{\sf{Area = \sqrt{21 \times 8 \times 7 \times 6}}}}

\large{\red{:\longmapsto{\green{\underline{\sf{ Triangle  \: DCB = 84 \:   {cm}^{2} }}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

Area of Quadrilateral :

\qquad{\twoheadrightarrow{\sf{Area {\small_{(Quadrilateral)}} = Sum \:  of  \: both  \: triangles}}}

\qquad{\twoheadrightarrow{\sf{Area {\small_{(Quadrilateral)}}  =  {84 \: cm}^{2} +  {</u><u>3</u><u>0</u><u> \: cm}^{2}  }}}

\large{\red{:\longmapsto{\green{\underline{\sf{  Area {\small_{(Quadrilateral)}} = 105 cm²}}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Therefore :

❝ Area of Quadrilateral is 114 cm² . ❞

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions