Math, asked by Finex, 5 days ago

\huge\sf{Question}
Prove (sec A + tan A)(1-sin A) =cos A​

Don't Spam​

Answers

Answered by IIMagicalWorldII
9

Step-by-step explanation:

(a + b)(a – b)= a2 – b2,

So, (1 + sin A)(1 – sin A) = 1 – sin2A.

Hence, the value of (sec A + tan A) (1 – sin A) is equal to cos A.

Answered by Anonymous
7

Given :-

  • (sec A + tan A)(1-sin A) =cos A

Solution:-

Taking LHS -

\begin{gathered}\\\quad\longrightarrow\quad \sf (sec \: A + tan \: A)(1-sin \: A)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf (\frac{1}{cos\:A} + \frac{sin\:A}{cos \:A})(1-sin \:A)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf (\frac{1+sin\:A}{cos\:A} )(1-sin \:A)  \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf \frac{1^2-sin^2\:A}{cos\:A}   \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf \frac{1-sin^2\:A}{cos\:A}   \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf \frac{1-sin^2\:A}{cos\:A}   \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf \frac{cos^2\:A}{cos\:A}   \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf cos\:A\\\end{gathered}

=RHS

Hence Proved.

Similar questions