Math, asked by Anonymous, 5 hours ago

 \huge   \sf \red{\sum \limits_{n = 2}^{ \infty}  \sum \limits_{k = 2}^{ \infty}  \frac{1}{ {k}^{n} \cdot k!} }

Answers

Answered by IamIronMan0
58

Answer:

 \boxed{ \huge \purple{3 - e}}

Step-by-step explanation:

Switch the summation signs

s = \sum \limits_{k= 2}^{ \infty} \sum \limits_{n = 2}^{ \infty} \frac{1}{ {k}^{n} \cdot k!} \\  \\  = \sum \limits_{k= 2}^{ \infty}  \frac{1}{k!} .\sum \limits_{n = 2}^{ \infty} \frac{1}{ {k}^{n} }

First sum is a infinite geometric series

 = \sum \limits_{k= 2}^{ \infty}  \frac{1}{k!} . \frac{( \frac{1}{ k {}^{2} }){ } }{1 -  \frac{1}{k} }  \\  \\  = \sum \limits_{k= 2}^{ \infty}  \frac{1}{k!} . \frac{1}{ {k}^{2} - k }  \\  \\  = \sum \limits_{k= 2}^{ \infty}  \frac{1}{k!} . \frac{k - (k - 1)}{k(k - 1)}  \\  \\  = \sum \limits_{k= 2}^{ \infty}  \frac{1}{k!} . \bigg( \frac{1}{k - 1}  -  \frac{1}{k} \bigg ) \\  \\  \sum \limits_{k= 2}^{ \infty}   \bigg( \frac{1}{(k - 1)k!}  -  \frac{1}{k.k!} \bigg )  \\  \\ =  \frac{1}{1.2!}  -  \frac{1}{2.2!}  +   \frac{1}{2.3!}  -  \frac{1}{3.3!}  +   \frac{1}{3.4!}  -   .... \\  \\  =  \frac{1}{2}   -  \bigg(  \frac{1}{2.2!}    -   \frac{1}{2.3!}   \bigg) -  \bigg( \frac{1}{3.3!}   -   \frac{1}{3.4!} \bigg)  -   .... \\  \\ =  \frac{1}{2}   -  \bigg(    \frac{3 - 1}{2.3!}   \bigg) -  \bigg( \frac{4 - 1}{3.4!} \bigg)  -   .... \\  \\   =  \frac{1}{2}   -  \bigg(    \frac{2}{2.3!}   \bigg) -  \bigg( \frac{3}{3.4!} \bigg)  -   .... \\  \\  =  \frac{1}{2}  -  \frac{1}{3!}  -  \frac{1}{4!}  -  \frac{1}{5!}  - .... \\  \\  =  \frac{1}{2}    -  \bigg(  \frac{1}{3!}   +   \frac{1}{4!}  + \frac{1}{5!}   + .... \bigg)

We know that

[ In expansion formula put x = 1 ]

e =  1 +   \frac{1}{1!}  + \frac{1}{2!}   + \frac{1}{3!}   +   \frac{1}{4!}  + \frac{1}{5!}   +.. \\  \\  \implies \:  \frac{1}{3!}   +   \frac{1}{4!}  + \frac{1}{5!}   +.. = e - 1 - 1 -  \frac{1}{2}  \\  \\  \implies \:  \frac{1}{3!}   +   \frac{1}{4!}  + \frac{1}{5!}   + .... = e -  \frac{5}{2}

Put this value in sum

s =  \frac{1}{2}  - (e -  \frac{5}{2} ) \\  \\  \implies \: s =  \frac{1}{2}   -  e  +   \frac{5}{2}  \\  \\  \implies \: s = 3 - e

Answered by Anonymous
46

\huge{Answer : }

\huge\red{s=3-e}

Attachments:
Similar questions