Math, asked by Anonymous, 1 month ago


 \huge \sf{simplify - }
1. \:  \sqrt{ \frac{5}{12} }  \\
2. \:  \sqrt{1 \frac{46}{75}}  \\
3. \:  \sqrt{112}  -  \sqrt{63}  +  \frac{224}{ \sqrt{28} } \\
4. \: \frac{4 \sqrt{18} }{ \sqrt{12} }  -  \frac{8 \sqrt{75} }{ \sqrt{32} }  +  \frac{9 \sqrt{2} }{ \sqrt{3} }  \\
 \bold{ \bullet \:  give \: full \: solution  }
 \bold{ \bullet \: do \: not \: spam }
 \bold{ \bullet \: questions \: are \: available \: in \: attachment \: too }







Attachments:

Answers

Answered by 12thpáìn
10

\\\\ \sf1. \: \sqrt{ \dfrac{5}{12} }

Solution

\sf~~~~~~~~~~\implies  \sqrt{ \dfrac{5}{12} }

\sf~~~~~~~~~~\implies  \sqrt{ \dfrac{5}{2 \times 2 \times 3} }

\sf~~~~~~~~~~\implies  \sqrt{ \dfrac{5}{ {2}^{2}  \times 3} }

\sf~~~~~~~~~~\implies   \dfrac{ \sqrt{5} }{ 2 \sqrt{3} }

\sf~~~~~~~~~~\implies   \dfrac{ \sqrt{5} }{ 2 \sqrt{3} }  \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }

\sf~~~~~~~~~~\implies   \dfrac{ \sqrt{15} }{ 2 \sqrt{3}   \times \sqrt{3} }

\sf~~~~~~~~~~\implies   \dfrac{ \sqrt{15} }{ 2 \times  3 }

\sf~~~~~~~~~~\implies   \dfrac{ \sqrt{15} }{ 6 }

____________________

 \\\bf \: \sqrt{ \dfrac{5}{12} }  = \dfrac{ \sqrt{15} }{ 6 }   \\

____________________

 \\  \sf2. \: \sqrt{1 \dfrac{46}{75}}

Solution

\sf~~~~~~~~~~\implies  \sqrt{1 \dfrac{46}{75}}

\sf~~~~~~~~~~\implies  \sqrt{ \dfrac{121}{75}}

\sf~~~~~~~~~~\implies  \sqrt{ \dfrac{ {11}^{2} }{ {5}^{2} \times 3 }}

\sf~~~~~~~~~~\implies  \dfrac{11  }{ 5   \sqrt{3}  }

\sf~~~~~~~~~~\implies  \dfrac{11  }{ 5   \sqrt{3}  } \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }

\sf~~~~~~~~~~\implies  \dfrac{11 \sqrt{3}   }{  5 \times  \sqrt{3}  \times  \sqrt{3}  }

\sf~~~~~~~~~~\implies  \dfrac{11 \sqrt{3}   }{  5 \times  3  }

\sf~~~~~~~~~~\implies  \dfrac{11 \sqrt{3}   }{  15 }

____________________

 \\\bf \: \sqrt{1 \dfrac{46}{75}}   = \dfrac{11 \sqrt{3}   }{  15 }  \\

____________________

 \\  \sf3. \: \sqrt{112} - \sqrt{63} + \dfrac{224}{ \sqrt{28} }

Solution

{\sf~~~~~~~~~~\implies  \: \sqrt{112} - \sqrt{63} + \dfrac{224}{ \sqrt{28} } }

{\sf~~~~~~~~~~\implies  \: \sqrt{2 \times 2 \times 2 \times 2 \times 7} - \sqrt{3 \times 3 \times 7} + \dfrac{224}{ \sqrt{2 \times 2 \times 7} } }

{\sf~~~~~~~~~~\implies  \: \sqrt{ {2}^{4}  \times 7} - \sqrt{ {3}^{2}  \times 7} + \dfrac{224}{ \sqrt{ {2}^{2}  \times 7} } }

{\sf~~~~~~~~~~\implies  \: 4\sqrt{   7} - 3\sqrt{    7} + \dfrac{224}{ 2\sqrt{  7} } }

{\sf~~~~~~~~~~\implies  \: \sqrt{    7} + \dfrac{112}{ \sqrt{  7} } }

{\sf~~~~~~~~~~\implies  \:  \dfrac{ \sqrt{7} \times  \sqrt{7}   + 112}{ \sqrt{  7} } }

{\sf~~~~~~~~~~\implies  \:  \dfrac{ 7   + 112}{ \sqrt{  7} } }

{\sf~~~~~~~~~~\implies  \:  \dfrac{  119}{ \sqrt{  7} } }

{\sf~~~~~~~~~~\implies  \:  \dfrac{  17 \times 7}{ \sqrt{  7} }  }

{\sf~~~~~~~~~~\implies  \:  \dfrac{  17 \times  \sqrt{7}  \times  \sqrt{7} }{ \sqrt{  7} }  }

{\sf~~~~~~~~~~\implies  \:   17   \sqrt{7}  }

____________________

\\ \bf \: \sqrt{112} - \sqrt{63} + \dfrac{224}{ \sqrt{28} }  = 17 \sqrt{7}  \\

____________________

 \sf4.~~~~ \: \dfrac{4 \sqrt{18} }{ \sqrt{12} } - \dfrac{8 \sqrt{75} }{ \sqrt{32} } + \dfrac{9 \sqrt{2} }{ \sqrt{3} }

Solution

{\sf~~~~~~~~~~\implies  \dfrac{4 \sqrt{18} }{ \sqrt{12} } - \dfrac{8 \sqrt{75} }{ \sqrt{32} } + \dfrac{9 \sqrt{2} }{ \sqrt{3} } }

{\sf~~~~~~~~~~\implies  \dfrac{4 \sqrt{2 \times 3 \times 3} }{ \sqrt{2 \times 2 \times 3} } - \dfrac{8 \sqrt{5 \times 5 \times 3} }{ \sqrt{2 \times 2 \times 2 \times 2 \times 2} } + \dfrac{9 \sqrt{2} }{ \sqrt{3} } }

{\sf~~~~~~~~~~\implies  \dfrac{4 \sqrt{2 \times  {3}^{2} } }{ \sqrt{ {2}^{2}  \times 3} } - \dfrac{8 \sqrt{ {5}^{2}  \times 3} }{ \sqrt{  {4}^{2}  \times 2} } + \dfrac{9 \sqrt{2} }{ \sqrt{3} } }

{\sf~~~~~~~~~~\implies  \dfrac{2 \times 2 \times 3 \sqrt{2  } }{ 2\sqrt{  3} } - \dfrac{4 \times 2 \times 5 \sqrt{  3} }{ 4\sqrt{   2} } + \dfrac{9 \sqrt{2} }{ \sqrt{3} } }

{\sf~~~~~~~~~~\implies  \dfrac{ 6 \sqrt{2  } }{ \sqrt{  3} } - \dfrac{10 \sqrt{  3} }{ \sqrt{   2} } + \dfrac{9 \sqrt{2} }{ \sqrt{3} } }

{\sf~~~~~~~~~~\implies  \dfrac{ 6 \sqrt{2  } }{ \sqrt{  3} } \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }  - \dfrac{10 \sqrt{  3} }{ \sqrt{   2} }   \times  \dfrac{ \sqrt{2} }{ \sqrt{2} } +   \dfrac{9 \sqrt{2} }{ \sqrt{3} }  \times  \dfrac{ \sqrt{3} }{ \sqrt{3} } }

{\sf~~~~~~~~~~\implies  \dfrac{ 6 \sqrt{6  } }{ 3 }   - \dfrac{10 \sqrt{  6} }{ 2 }    +   \dfrac{9 \sqrt{6} }{ 3 }  }

{\sf~~~~~~~~~~\implies  \dfrac{2( 6 \sqrt{6  }) - 3(10 \sqrt{6}) + 2(9 \sqrt{6}  ) }{ 6 }   }

{\sf~~~~~~~~~~\implies  \dfrac{12 \sqrt{6  } -  30 \sqrt{6} + 18 \sqrt{6}   }{ 6 }   }

{\sf~~~~~~~~~~\implies  \dfrac{ \cancel{30 \sqrt{6  }} -   \cancel{3 0 \sqrt{6}}  }{ 6 }   }

{\sf~~~~~~~~~~\implies  \dfrac{ 0  }{ 6 }   }

{\sf~~~~~~~~~~\implies  0 }

____________________

{\bf  \dfrac{4 \sqrt{18} }{ \sqrt{12} } - \dfrac{8 \sqrt{75} }{ \sqrt{32} } + \dfrac{9 \sqrt{2} }{ \sqrt{3} } = 0 }

____________________

\\\\\\\\\\

 \\\bf \: \sqrt{ \dfrac{5}{12} }  = \dfrac{ \sqrt{15} }{ 6 }   \\

 \bf \: \sqrt{1 \dfrac{46}{75}}   = \dfrac{11 \sqrt{3}   }{  15 }  \\

 \bf \: \sqrt{112} - \sqrt{63} + \dfrac{224}{ \sqrt{28} }  = 17 \sqrt{7}  \\

{\bf  \dfrac{4 \sqrt{18} }{ \sqrt{12} } - \dfrac{8 \sqrt{75} }{ \sqrt{32} } + \dfrac{9 \sqrt{2} }{ \sqrt{3} } = 0 }

bb

Answered by Anonymous
43

\bf{ 1 \sqrt{ \frac{5}{12} }  \\  =  \frac{ \sqrt{5}{ \sqrt{12} }  \\

\bf{ =  \frac{ \sqrt{5} }{ \sqrt{4 \times 3}} } \\

\bf{=  \frac{ \sqrt{5} }{2 \sqrt{3} }}   \\  \\  \\

\bf{2 \sqrt{ 1\frac{46}{75} }  \\  =   \sqrt{ \frac{121}{75} } } \\

\bf{ =  \sqrt{ \frac{ {11}^{2} }{ {5}^{2}  \times 3} } } \\

\bf{ =  \frac{11}{5 \sqrt{3} }  \\

\bf{=  \frac{11}{5 \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} } } \\

\bf{ =  \frac{11 \sqrt{3} }{5 \times  \sqrt{3}  \times  \sqrt{3} } } \\

\bf{=  \frac{11 \sqrt{3} }{5 \times 3} } \\

\bf{=  \frac{11 \sqrt{3} }{15} } \\  \\  \\

\bf{3 \sqrt{112}  - 63 +  \frac{224}{ \sqrt{28} }  }\\

\bf{ =  \sqrt{112}  -  \sqrt{63}  +  \frac{224}{ \sqrt{28} } }  \\

\bf{ =  \sqrt{2 \times 2 \times 2 \times 2 \times 7}  -  \sqrt{3 \times 3 \times 7} } \\

\bf{  =  \sqrt{ {2}^{4}  \times 7}  -  \sqrt{ {3}^{2} \times 7 }   +  \frac{224}{ {2}^{2} \times 7 }}  \\

\bf{ = 4 \sqrt{7}  - 3 \sqrt{7}   +  \frac{224}{2 \sqrt{7} }  \\  =  \sqrt{7}  +  \frac{112}{7}  } \\

\bf{=  \frac{ \sqrt{7} \times  \sqrt{7}   + 112}{ \sqrt{7} }  \\  =  \frac{7 + 112}{ \sqrt{7} }  } \\

\bf{ =  \frac{119}{ \sqrt{7} } } \\

\bf{=  \frac{17 \times 7}{ \sqrt{7} } } \\

\bf{=  \frac{17 \times  \sqrt{7} \times  \sqrt{7}  }{ \sqrt{7} }}  \\

\bf{= 17 \sqrt{7} } \\  \\  \\

\bf{4 \frac{4 \sqrt{8} }{ \sqrt{12} }  -  \frac{8 \sqrt{75} }{ \sqrt{32} }  +  \frac{9 \sqrt{2} }{3} } \\

\bf{ =  \frac{4 \sqrt{2 \times 3 \times 3} }{ \sqrt{2 \times 2 \times 3} }  -  \frac{8 \sqrt{5 \times 5 \times 3} }{ \sqrt{2 \times 2 \times 2 \times 2 \times 2} }  +  \frac{9 \sqrt{2} }{ \sqrt{3} } } \\

\bf{ =  \frac{4 \sqrt{2 \times  {3}^{2} } }{ \sqrt{ {2}^{2} } \times 3 }  -  \frac{8 \sqrt{ {5}^{2}  \times 3} }{ {4}^{2} \times 2 }  +  \frac{9 \sqrt{2} }{ \sqrt{3} } } \\

\bf{=  \frac{2 \times 2 \times 3 \sqrt{2} }{2 \sqrt{3} }  -  \frac{4 \times 2 \times 5 \sqrt{3} }{4 \sqrt{2} }  +  \frac{9 \sqrt{3} }{ \sqrt{3} }  } \\

\bf{=  \frac{6 \sqrt{2} }{ \sqrt{3} }  -  \frac{10 \sqrt{3} }{ \sqrt{2} }  +  \frac{9 \sqrt{2} }{ \sqrt{3 } }  } \\

\bf{ =  \frac{6 \sqrt{2} }{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  -  \frac{10 \sqrt{3} }{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  +  \frac{9 \sqrt{2} }{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} } } \\

\bf{=  \frac{6 \sqrt{6} }{3}  -  \frac{10 \sqrt{6} }{2}  +  \frac{9 \sqrt{6} }{3}}  \\

\bf{=  \frac{2(6 \sqrt{6} ) - 3(10 \sqrt{6} ) + 2(9 \sqrt{6}) }{6} } \\

\bf{=  \frac{12 \sqrt{6}  - 30 \sqrt{6} + 18 \sqrt{6}  }{6} } \\

\bf{  =  \frac{30 \sqrt{6}  - 30 \sqrt{6} }{6} } \\

\bf{  =  \frac{0}{6}  = 0} \\  \\  \\  \\  \\

#NAWABZAADI

Similar questions