Math, asked by Anonymous, 6 months ago

\huge\sf\underline{\purple{❥}\pink{Q}\orange{U}\blue{E}\red{S}\green{T}\purple{I}\pink{O}\red{N}}

 \sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  = 0
Find the roots of the above quadratic equation.
And define quadratic polynomial.

Question is for ItzFrozenFlames
Let her answer.. ​

Answers

Answered by TheEternity
2

\huge\sf\underline{\purple{❥}\pink{Q}\orange{U}\blue{E}\red{S}\green{T}\purple{I}\pink{O}\red{N}}

\sqrt{2}  {x}^{2}  + 7x + 5 \sqrt{2}  = 0

Find the roots of the above quadratic equation.

\huge\sf\underline{\purple{❥}\pink{A}\orange {N}\blue{S}\red{W}\green{E}\purple{R}}

x =  \frac{ - 5}{ \sqrt{2} }  \: or \: x  =  \sqrt{ - 2}

Step-by-step explanation:

\sqrt{2 {x}^{2} }  + 7x + 5 \sqrt{2}  = 0 \\  \sqrt{2}  {x}^{2}  + 5x + 2x + 5 \sqrt{2}  \\ x( \sqrt{2} x + 5) +  \sqrt{2} ( \sqrt{2} x + 5) \\ ( \sqrt{2}x + 5)(x +  \sqrt{2} ) \\  \\ roots \: of \: this \: equations \: are  \\ the \: values \:  for \: which \:  : -  \\   ( \sqrt{2}x + 5)(x +  \sqrt{2} ) = 0 \\ ∴ \:  \sqrt{2} x + 5 = 0 \: or \: x +  \sqrt{2}  = 0 \\

so \:  \: x =  \frac{ - 5}{ \sqrt{2} }  \: or \: x  =  \sqrt{ - 2}

\color{red}{About \:Quadratic \: polynomials\: :-}

➯ A polynomial having degree 2 is called a quadratic polynomial.

➯ The form of quadratic polynomial is

p(x) = a {x}^{2}  + bx + c

➯ Degree of the quadratic polynomial will be 2.

➯ Variable of the quadratic polynomial will be 1.

\color{red}{For \:example  :-}

p(x) = 2 {x}^{2}  + 5x + 3 \\ 3 \:➝ \:  constant \\ 2 \: and \: 5 \: ➝ \: coefficient \\  {}^{2}  \: ➝ \: degree \\ x \:➝ \:  variable \:

➯ In a quadratic polynomial there are 2 zeros because it has degree 2.

\color{red}{➯  The \: 2\: zeros \:are :-}

i) \:  \: alpha( \alpha )  \:  \\ ii) \: beta \: ( \beta )

\color{red}{For \:example  :-}

p(x) = 2 {x}^{2}  + 5 + 3 \\  = 2 {x}^{2}  + 2x + 3x + 3 \\  = 2x(x + 1) + 3(x + 1) \\  = (x + 1)(2x + 3) \\  \\ As,  \: \: p(x) = 0 \\ \\  ❥∴ \: (x + 1)(2x + 3) = 0 \\ x + 1 = 0 \\ x =  - 1 \\  \\ ❥ \: 2x + 3 = 0 \\ 2x =  - 3 \\ x =  \frac{ - 3}{2} \\  \\ Here,  \:  \alpha  =  - 1 \\  \beta  =  \frac{ - 3}{2}

Similar questions