Physics, asked by Anonymous, 10 months ago

\Huge{\star}{\underline{\boxed{\red{\sf{Question :}}}}}{\star}

A particle in air at an angle β to a surface which itself is inclined at an angle α to the horizontal.(see figure)

(a) Find expression for range on the plane surface
(b) Time of flight
(c) β at which range will be maximum

==================

No Spam! ​

Attachments:

Answers

Answered by ShivamKashyap08
39

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Angle of inclination = α
  • Angle at which Projectile is Projected = β.

\huge{\bold{\underline{Explanation:-}}}

Here the Acceleration due to gravity will be acting vertically downwards,

But For the Projectile a Component of acceleration due to gravity will be responsible, I.e. gcosα.

And, The Final displacement in y - direction is Zero .

Now,

\rule{300}{1.5}

Applying Second kinematic equation in y - direction,

\large{\boxed{\tt S_y = u_yt + \dfrac{1}{2}a_yt^2}}

Substituting the values,

\large{\tt y = (v_o sin \beta)t + \dfrac{1}{2} \times (- g cos \alpha)t^2}

Here the component of Velocity along the y - direction is taken, and Acceleration is taken as negative because it is opposing the motion of the body.

\large{\tt 0 = (v_o sin \beta)t - \dfrac{(g cos \alpha)t^2}{2}}

\large{\tt  (v_o sin \beta)t = \dfrac{(g cos \alpha)t^2}{2}}

\large{\tt  (v_o sin \beta)\cancel{t} = \dfrac{(g cos \alpha)\cancel{t^2}}{2}}

\large{\tt v_o sin \beta = \dfrac{(g cos \alpha)t}{2}}

For Time of flight; t = T seconds,

\large{\tt (g cos \alpha)T = 2v_o sin \beta}

Now,

\large{\boxed{\boxed{\tt T = \dfrac{2v_o sin \beta}{(g cos \alpha)}}}}

\rule{300}{1.5}

\rule{300}{1.5}

By 2nd Kinematic equation in x direction,

\large{\boxed{\tt s_x = u_xt + \dfrac{1}{2}a_xt^2}}

\large{\tt R = v_o sin \beta \times \left( \dfrac{2v_o sin \beta}{(g cos \alpha)} \right) + \dfrac{g sin \alpha}{2} \times \left( \dfrac{2v_o sin \beta}{(g cos \alpha)} \right)^2}

Now,

\large{\tt R = 2v_o^2 sin \beta \times \left( \dfrac{ sin \beta}{(g cos \alpha)} \right) + \dfrac{g sin \alpha}{2} \times \left( \dfrac{2v_o sin \beta}{(g cos \alpha)} \right)^2}

Taking common,

\large{\tt R =  \dfrac{2v_o^2 sin \beta}{(g^2 cos^2 \alpha)} ( cos \beta cos \alpha - sin \alpha sin \beta)}

Now, using the trigonometric identity,

we get

{\tt ( cos \beta cos \alpha - sin \alpha sin \beta) = cos ( \alpha + \beta)}

\large{\tt R =  \dfrac{2v_o^2 sin \beta}{(g^2 cos^2 \alpha)} \times cos (  \alpha + \beta)}

\large{\boxed{\boxed{\tt R = \dfrac{2v_o^2 sin \beta cos(\alpha + \beta)}{(g^2 cos^2 \alpha)}}}}

\rule{300}{1.5}

#refer the attachment for detailed explanation of the third part of the answer.

\rule{300}{1.5}

Attachments:

BrainlyConqueror0901: well explained keep it up : )
ShivamKashyap08: Thank uh !! :)
Similar questions