Physics, asked by peerbux363, 9 months ago

\huge\star\underline\mathfrak\green{Question}



Two resistors are connected (a) in series (b) in parallel. The equivalent resistance in the two cases are 9 ohm and 2 ohm respectively. Then what will be the resistance of the component resistors ?


Give answer with proper Explanation... Wrong answer will be reported. ​

Answers

Answered by Anonymous
84

 \large\bf\underline {To \: find:-}

  • we need to find the resistance of component resistors .

 \huge\bf\underline{Solution:-}

 \bf\underline{\red{Given:-}}

Two resistors are connected (a) in series (b) in parallel. The equivalent resistance in the two cases are 9 ohm and 2 ohm respectively.

Let

Let two resistors be R1 and R2

▶when two resistors are connected in series:-

 \bf \red{R_{eq} = R_1 + R_2}

\:\dashrightarrow \rm \:  R_1 + R_2 = 9

\:\dashrightarrow \rm \:  R_1   = 9 - R_2.....(1)

▶ When two resistors are connected in parallel

Then,

 \bf \red{ \frac{1}{R_{eq} }=  \dfrac{1}{R_1 }+   \dfrac{1}R_2}

 \dashrightarrow \rm \: \frac{1}{2 }=  \dfrac{1}{R_1 }+   \dfrac{1}R_2

 \dashrightarrow \rm \: \frac{1}{2 }=  \dfrac{R_2 + R_1}{R_1 .R_2}

 \dashrightarrow \rm \: 2=  \dfrac{R_1 .R_2}{R_1  + R_2}

 \bf \: from \:eq. (1)

 \dashrightarrow \rm \: 2=  \dfrac{(9 - R_2) .R_2}{(9 -R_2)   + R_2}

 \dashrightarrow \rm \: 2=  \dfrac{9  R_2  - {R_2 }^{2} }{9 }

 \dashrightarrow \rm \:  {R_2 }^{2}  - 9  R_2  + 18 = 0

 \dashrightarrow \rm \:  {R_2 }^{2}  - 6  R_2 -  3  R_2 + 18 = 0

 \dashrightarrow \rm \:  {R_2 }(R_2- 6) -  3 ( R_2  - 6)= 0

 \dashrightarrow \rm \:  (R_2 -  3) ( R_2  - 6)= 0

 \dashrightarrow \rm \:  R_2 = 3  \: or \: R_2   = 6

  • R2 = 6Ω then,

▶R1 = 9 - R2

▶R1 = 9 - 6

▶R1 = 3Ω

hence,

༒ the resistance of the component resistors is 3Ω and 6Ω

━━━━━━━━━━━━━━━━━━━━━━━━━


amitkumar44481: Great :-)
Answered by Anonymous
51

Let the resistance be \sf R_1 \:and\: R_2

series connection =

\sf \:9 = R_1 + R_2\\\sf R_1 =9- R_2

Parallel connection =

\sfR_{eq}\frac{R_1R_2}{R_1+R_2}\\\sf 2 = \frac{(9-R_2)R_2}{9}\\\sf or\: R </p><p>^{2}_{2} −9R_2+18=0\\\sf R_2=6Ω \\\sf R_1 = 9 - 6 = 3Ω

Similar questions