Math, asked by BrutalMaster, 1 month ago


\huge\star\underline{\orange{❥︎Q}\mathfrak\blue{ue}\mathfrak\purple{S}\mathbb\pink{tion}}\star\:
In ∆ ABC, seg AD is parallel to seg BC
Prove that AB²+CD²= BD²+AC²Q
Don't spam ​

Answers

Answered by Anonymous
31

In △ADC, ∠ADC=90°

AC² =AD² + C (By Pythagoras theorem) ....

(1)

In △DBA, ∠ADB= 90°

AB² = AD² + BD² (By Pythagoras theorem) ....

(2)

Subtracting (1) from (2), we get

AB² AC² = AD² + BD² AD² CD²

AB² – AC² = BD² – CD²

AB² + CD² = BD²+AC²

Answered by Anonymous
3

\huge{❥}\:{\mathtt{{\purple{\boxed{\tt{\pink{\red{A}\pink{n}\orange{s}\green{w}\blue{e}\purple{r᭄}}}}}}}}❥

_______________________________________

In ∆ADC,∠ADC = 90°

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎∴AC² = AD²+ CD²(By Pythagoras theorem). . . . . . . .(1)

In ∆DBA,∠ADB = 90°

‎ ‎ ‎ ‎ ‎ ‎ ‎∴AB²= AD²+BD²(By Pythagoras theorem). . . . . . . .(2)

Subtracting (1) from (2), we get

AB² - AC² = AD² + BD² - AD² - CD²

‎ ‎ ‎ ‎ ‎ ‎ ‎∴AB² - AC² = BD² - CD²

‎ ‎ ‎ ‎ ‎ ‎ ‎∴AB² + CD² = BD² + AC²

_______________________________________

hope it helps you

have a great day ahead

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\huge\colorbox{blak}{INDIAN JOKER࿐}

Similar questions