In ∆ ABC, seg AD is parallel to seg BC
Prove that AB²+CD²= BD²+AC²Q
Don't spam
Answers
Answered by
31
In △ADC, ∠ADC=90°
∴ AC² =AD² + CD² (By Pythagoras theorem) ....
(1)
In △DBA, ∠ADB= 90°
∴ AB² = AD² + BD² (By Pythagoras theorem) ....
(2)
Subtracting (1) from (2), we get
AB² – AC² = AD² + BD² – AD² – CD²
∴ AB² – AC² = BD² – CD²
∴ AB² + CD² = BD²+AC²
Answered by
3
_______________________________________
In ∆ADC,∠ADC = 90°
∴AC² = AD²+ CD²(By Pythagoras theorem). . . . . . . .(1)
In ∆DBA,∠ADB = 90°
∴AB²= AD²+BD²(By Pythagoras theorem). . . . . . . .(2)
Subtracting (1) from (2), we get
AB² - AC² = AD² + BD² - AD² - CD²
∴AB² - AC² = BD² - CD²
∴AB² + CD² = BD² + AC²
_______________________________________
hope it helps you
have a great day ahead
Similar questions
English,
23 days ago
Psychology,
23 days ago
Science,
23 days ago
English,
1 month ago
Social Sciences,
9 months ago
Math,
9 months ago