Math, asked by IIChillinBabeII, 1 month ago

\huge{\textbf{{{\color{navy}{Que}}{\purple{ѕt}}{\pink{ion♤࿐}}{\color{pink}{:}}}}}

If A, B and C are interior angles of a triangle ABC, then show that sin [(B + C)/2] = cos A/2.

No Spam❌
No irrelevant answers❌​

Answers

Answered by sia1234567
41

   \bigstar \: \underline{\underline \bold{prove : }}

 \leadsto \sf \red{ \sin ( \frac{B+ C}{2} )  =  \cos( \frac{A}{2} ) } \\

 \underline{ \underline{ \bigstar   \: \bold{proof : }}}

 \odot \sf{ \: as \: we \: know : - }

 \underbrace\bold{ : \longmapsto  \angle \: a +  \angle \: b +  \angle \: c = 180 \degree}

 \pmb{( \angle  \: e\: sum \: property)}

\downarrow  \purple{ \pmb{\:dividing \: both \: the \: sides \: by \: 2}} \:  \downarrow

  \bold{ \hookrightarrow \frac{\angle \: a} {2}  + }  \bold{\frac{ \angle \: b}{2}  + }  \bold{\frac{ \angle \: c}{2}  = }  \bold{\frac{180 \degree}{2}  } \\

 \bold{ \hookrightarrow \frac{\angle \: a} {2}  + }  \bold{\frac{ \angle \: b}{2}  + }  \bold{\frac{ \angle \: c}{2}  =  \: }  \bold {{90 \degree}} \\

 \hookrightarrow\bold{\frac{ \angle \: b}{2}  + }  \bold{\frac{ \angle \: c}{2}  = \:  }  \bold{{90 \degree}  \bold{-  \frac{ \angle \: a}{2} }} \\

 \bigstar \:  \pmb{\purple{on \: taking \: 'sin' \: in \: both \: the \: sides : -  }}

  \sf\hookrightarrow  \:  \sin(  \frac{\angle \: b +  \angle \: c}{2})  =  \sin(90 \degree -  \frac{ \angle \: a}{2} )  \\

\sf\hookrightarrow  \:  \sin(  \frac{\angle \: b +  \angle \: c}{2})  =  \cos({  \frac{ \angle \: a}{2} })  \\

\sf\hookrightarrow  \:  \sin(  \frac{\:B  +  \: C}{2})  =  \cos\frac{A} {2} \\

 \overline {\underline{\fbox{| hence \: proved |}}}

________________________________

Answered by IIMizzPagliII
48

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{αиѕωєя࿐}}}

➪Given△ABC

➪We know that sum of three angles of a triangle is 180

➪Hence ∠A+∠B+∠C=180°

➪or A+B+C=180°

➪B+C=180° −A

➪Multiply both sides by 1/2

➪1/2 (B+C) = 1/2 (180° − A)

➪1/2 (B + C) = 90° - A/2...(1)

➪Now 1/2 (B+C)

➪Taking sine of this angle

➪sin (B + C /2)

➪[B + C /2 = 90° - A/2]

➪sin(90°-A/2)

➪cos A/2 [sin(90° - θ ) = cos θ]

➪Hence sin( B + C/2 )=cos A/2 proved

❝Hope It Helps❞

\huge{\underline{\mathfrak{❥Sachuuu❣}}}

Similar questions