Math, asked by IIMizzPagliII, 2 months ago

\huge{\textbf{{{\color{navy}{Que}}{\purple{ѕt}}{\pink{ion♤࿐}}{\color{pink}{:}}}}}

If A, B and C are interior angles of a triangle ABC, then show that sin [(B + C)/2] = cos A/2.

No Spam❌
No irrelevant answers❌
No Gøøgled Answers ❌
Own Answers Needed ✔️

Answers

Answered by IISanskariKudiII
38

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{αиѕωєя࿐}}}

➪Given△ABC

➪We know that sum of three angles of a triangle is 180

➪Hence ∠A+∠B+∠C=180°

➪or A+B+C=180°

➪B+C=180° −A

➪Multiply both sides by 1/2

➪1/2 (B+C) = 1/2 (180° − A)

➪1/2 (B + C) = 90° - A/2...(1)

➪Now 1/2 (B+C)

➪Taking sine of this angle

➪sin (B + C /2)

➪[B + C /2 = 90° - A/2]

➪sin(90°-A/2)

➪cos A/2 [sin(90° - θ ) = cos θ]

➪Hence sin( B + C/2 )=cos A/2 proved

❝Hope It Helps❞

\huge{\underline{\mathfrak{❥Sachuuu❣}}}

Answered by Kaytlyn
8

\huge{\underline{\mathtt{\blue{♕A}\green{N}\pink{S}\red{W}\purple{E}\orange{R♕:–}}}}

➪Given△ABC

➪We know that sum of three angles of a triangle is 180

➪Hence ∠A+∠B+∠C=180°

➪or A+B+C=180°

➪B+C=180° −A

➪Multiply both sides by 1/2

➪1/2 (B+C) = 1/2 (180° − A)

➪1/2 (B + C) = 90° - A/2...(1)

➪Now 1/2 (B+C)

➪Taking sine of this angle

➪sin (B + C /2)

➪[B + C /2 = 90° - A/2]

➪sin(90°-A/2)

➪cos A/2 [sin(90° - θ ) = cos θ]

➪Hence sin( B + C/2 )=cos A/2 proved

❝Hope It Helps❞

\huge\sf{\orange{\underline{\pink{\underline {❥ItzKaytlyn࿐ }}}}}

Similar questions