p and q are two point observed from the top of a building 10√3 m hight. If the angle of depression of the point are complementary and pq = 20m , then the distance of p from the building is?
Sure dear :)
@kumarkapil143825
Answers
Let OR = 10√3 m.
The angles of depression of the points are complementary and PQ = 20 m.
⇒ ∠OQR + ∠OPR = 90°
Let ∠OQR = x and ∠OPR = y
⇒ x + y = 90°
And let RQ = l m.
⇒ tan x = 10√3/l …….. eq(1)
⇒ tan y = 10√3/(l + 20)
⇒ tan (90 – x) = 10√3/(l + 20)
⇒ cot x = 10√3/(l + 20)
We know that tan θ . cot θ = 1.
⇒ 100 × 3 = l (l + 20)
⇒ 10 (10 + 20) = l (l + 20)
⇒ l = 10 m.
∴ The distance of P from the building = 10 + 20 = 30 m.
Thank you!
@itzshivani
Answer:
See the diagram.
Angles of depression are x and 90-x.
Tan x = 10√3 / PR => PR = 10√3 /Tan x
Tan (90-x) = Cot x = 10√3 /QR => QR = 10√3 tan x
PR - QR = 20 m = 10√3 (1/tanx - tan x)
=> Tan² x + (2/√3) tan x - 1 = 0
=> Tan x = 1/√3 by using the solution of quadratic equation.
=> x = 30° and hence, 90 - x = 60°
Now QR = 10√3 Tan x = 10 m
=> PR = 20 +10 = 30 meters