Math, asked by Mister360, 4 months ago

\Huge{\textmid{Solve\:it}}

\begin{array}{|ccc|}\sf 3 &\sf 6 &\sf 9 \\ \sf 4 &\sf 8 &\sf 12 \\ \sf 7 &\sf 14 &\sf 21\end{array}

Answers

Answered by mathdude500
6

\large\underline\purple{\bold{Solution :-  }}

\rm :\implies\:\begin{array}{|ccc|}\sf 3 &\sf 6 &\sf 9 \\ \sf 4 &\sf 8 &\sf 12 \\ \sf 7 &\sf 14 &\sf 21\end{array}

\rm :\:Taking \: 3 \: common \: from \: R_1, 4 \:  from \:  R_2,  \: 7 \: from \: R_3

\rm :\implies\:3 \times 4 \times 7 \times \begin{array}{|ccc|}\sf 1 &\sf 2 &\sf 3 \\ \sf 1 &\sf 2 &\sf 3 \\ \sf 1 &\sf 2 &\sf 3\end{array}

\rm :\implies\:3 \times 4 \times 7 \times 0

{If the all elements of a row (or column) are proportional (identical) to the elements of some other row (or column), then the determinant is zero.}

\rm :\implies\:0

\rm :\implies\:  \large\boxed{ \red{ \bf \: \begin{array}{|ccc|}\sf 3 &\sf 6 &\sf 9 \\ \sf 4 &\sf 8 &\sf 12 \\ \sf 7 &\sf 14 &\sf 21\end{array}= 0}}

Additional Information -

  • The determinant remains unaltered if its rows are changed into columns and the columns into rows. This is known as the property of reflection.

  • If all the elements of a row (or column) are zero, then the determinant is zero.

  • If the all elements of a row (or column) are proportional (identical) to the elements of some other row (or column), then the determinant is zero.

  • The interchange of any two rows (or columns) of the determinant changes its sign.

  • If all the elements of a row (or column) of a determinant are multiplied by a non-zero constant, then the determinant gets multiplied by the same constant.

Similar questions