Math, asked by Anonymous, 6 months ago

\huge\tt\bold{2 (\frac{2x - 1}{x + 3} ) - 3 ( \frac{x + 3}{2x - 1} ) = 5} find value of x answer with step by step

Answers

Answered by Anonymous
39

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}}\huge\tt\bold{2 (\frac{2x - 1}{x + 3} ) - 3 ( \frac{x + 3}{2x - 1} ) = 5}

\huge\mathcal{Answer}

GIVEN:-

\bold{\boxed{\boxed{\green{2 (\frac{2x - 1}{x + 3} ) - 3 ( \frac{x + 3}{2x - 1} ) = 5}}}}

⟹\bold{2 (\frac{2x - 1}{x + 3} ) - 3( \frac{x + 3}{2x - 1} ) = 5}

 ⟹\bold{\frac{2 {(2x - 1) }^{2}  - 3 {(x + 3)}^{2} }{(x + 3)(2x - 1)}  = 5}

⟹\bold{2(4 {x}^{2}  - 4x + 1)  - 3( {x}^{2}  + 6x + 9)}

 \bold{= 5(2 {x}^{2}  + 6x - x - 3)}

⟹\bold{8 {x}^{2}  - 8x + 2 - 3 {x}^{2}  - 18x - 27}

\bold{ = 10 {x}^{2}  + 30x - 5x - 15}

⟹\bold{5 {x}^{2}  + 51x + 10 = 0}

⟹\bold{5 {x}^{2}  + 50x + x + 10 = 0}

⟹\bold{5x(x + 10) + 1(x + 10) = 0}

⟹\bold{(x + 10)(5x + 1) = 0}

⟹\bold{x + 10 = 0}

⟹\bold{5x + 1 = 0}

\bold{\boxed{\red{x =  - 10}}}

\bold{\boxed{x =   - \frac{1}{5}}}

\bold{\boxed{∴The \:solutions\: are \:-20\: and\: -1/5}}

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions