Math, asked by mohilader, 8 months ago

 \huge\tt\bold{\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3 \frac{1}{3} }

Answers

Answered by Anonymous
178

Answer:

\huge{\bold☘}\mathfrak\pink{\bold{\underline{{ ℘ɧεŋσɱεŋศɭ}}}}{\bold☘}

\huge\tt\red{\bold{\underline{\underline{❥Question᎓}}}} \huge\tt\bold{\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3 \frac{1}{3} }

\huge\tt\mathbb{\boxed{\overbrace{\underbrace{\blue{Answer</p><p> }}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

 ⟹\bold{\frac{x - 1}{x - 2} + \frac{x - 3}{x - 4} = 3 \frac{1}{3}}

 ⟹\bold{\frac{(x - 1)(x - 4) + (x - 2)(x - 3)}{(x - 2)(x - 4)} = \frac{10}{3}}

 ⟹\bold{\frac{ {x}^{2} - x - 4x + 4 + {x}^{2} - 2x - 3x + 6 }{ {x}^{2} - 2x - 4x + 8} = \frac{10}{3} }

 ⟹\bold{\frac{2 {x}^{2} - 10x + 10}{ {x}^{2} - 6x + 8 } = \frac{10}{3}}

⟹\bold{6 {x}^{2} - 30x + 30 = 10 {x}^{2} - 60x + 80}

⟹\bold{4 {x}^{2} - 30x + 50 = 0}

⟹\bold{2 {x}^{2} - 15x + 25 = 0}

⟹\bold{2 {x}^{2} - 10x - 5x + 25 = 0}

⟹\bold{2x(x - 5) - 5(x - 5) = 0}

⟹\bold{(x - 5)(2x - 5) = 0}

⟹\bold{x - 5 = 0 \: or \: 2x - 5 = 0}

⟹\bold{x = 5 \: or \: x = \frac{5}{2}}

\bold{∴5\: and\: 5/2 \:are \:two \:solutions \:of \:given\: equation}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Answered by Anonymous
0

According to the question

⟹\bold{\frac{(x - 1)(x - 4) + (x - 2)(x - 3)}{(x - 2)(x - 4)} = \frac{10}{3}} \\  \\ </p><p>	</p><p></p><p>	</p><p> </p><p></p><p>⟹\bold{\frac{ {x}^{2} - x - 4x + 4 + {x}^{2} - 2x - 3x + 6 }{ {x}^{2} - 2x - 4x + 8} = \frac{10}{3} } \\  \\ </p><p>	</p><p> </p><p></p><p>⟹\bold{\frac{2 {x}^{2} - 10x + 10}{ {x}^{2} - 6x + 8 } = \frac{10}{3}} \\  \\ </p><p></p><p>⟹\bold{6 {x}^{2} - 30x + 30 = 10 {x}^{2} - 60x + 80} \\  \\ </p><p>⟹\bold{2 {x}^{2} - 15x + 25 = 0} \\  \\ </p><p></p><p>⟹\bold{2 {x}^{2} - 10x - 5x + 25 = 0} \\  \\ </p><p></p><p>⟹\bold{2x(x - 5) - 5(x - 5) = 0} \\  \\ </p><p></p><p>⟹\bold{(x - 5)(2x - 5) = 0} \\  \\ </p><p></p><p>⟹\bold{x - 5 = 0 \: or \: 2x - 5 = 0} \\  \\ </p><p></p><p>⟹\bold{x = 5 \: or \: x = \frac{5}{2}} \\  \\ </p><p>\bold{∴5\: and\: 5/2 \:are \:two \:solutions \:of \:given\: equation}

Similar questions