Math, asked by Anonymous, 8 days ago

\huge\tt\bold\green{Question:-}
Find\rm{{L}^{-1}\left \{\frac{s}{2s^{2}-1}\right\}.

Answers

Answered by llItzDishantll
39

\huge\tt\bold\green{Answer:-}

SoluTion:- (By Factorization)

\implies\l\:-\frac{s}{2s^2-1}

To write  l  as a fraction with a common denominator, multiply by,

\implies\:\frac{2s^2-1}{2s^2-1}

\implies\:l\:\frac{(2s^2-1)}{2s^2-1}\:-\:\frac{s}{2s^2-1}

Combine the numerators over the common denominator,

\implies\:\frac{l\:(2s^2-1)\:-s}{2s^2-1}

Rewrite it in a factored form,

\implies\:\frac{2ls^2\:-\:l\:-\:s}{2s^2-1}

Hope\:It\:Helps\:You\:Mate\::)

____________________________

Answered by Limafahar
41

\huge\tt\bold\pink{Question:-}

 \frac{l {}^{ - 1s} }{2}  \times s {}^{2}  - 1

\huge\tt\bold\pink{Answer :-}

\large\boxed{\textsf{\textbf{\red{combine \: multiplied\:terms \:into\: a\: simple \: fraction :-}}}}

 \frac{l {}^{ - 1s} }{2}  \times s {}^{2}  - 1

 \frac{l {}^{ - 1ss} }{2}  - 1

\large\boxed{\textsf{\textbf{\red{combine \: exponents \: :-}}}}

 \frac{l {}^{ - 1ss} }{3}  - 1

\large\boxed{\textsf{\textbf{\red{ find \: common \: factor  :-}}}}

 \frac{l {}^{ - 1}s {}^{3}  }{2}  +  \frac{2( - 1)}{2}

\large\boxed{\textsf{\textbf{\red{combine \: fractions\: with\:common \: denominator  :-}}}}

 \frac{ {l}^{ - 1}s {}^{3}   + 2( - 1)}{2}

\large\boxed{\textsf{\textbf{\red{Multiply \: the \: numbers  :-}}}}

 \frac{ {l}^{ - 1}s {}^{3}   - 2 }{2}

\huge\tt\bold\pink{solution :-}

 \frac{ {l}^{ - 1}s {}^{3}  - 2 }{2}

Similar questions