Math, asked by αииιє, 14 hours ago


\huge\tt\fbox\purple{•Question}
In the given ∆ABC it is given that \angle∠ B = 90° .AB = 24 cm and BC = 7 cm than find the Value of Cos A = ?


No spam please!! ​

Attachments:

Answers

Answered by Anonymous
108

 \star \; {\underline{\boxed{\pmb{\pink{\sf{ \; Given \; :- }}}}}}

  • ∠B = 90°
  • AB = 24 cm
  • BC = 7 cm

 \\ \\

 \star \; {\underline{\boxed{\pmb{\green{\sf{ \; To \; Find \; :- }}}}}}

  • Cos A = ?

 \\ \qquad{\rule{200pt}{2pt}}

 \star \; {\underline{\boxed{\pmb{\orange{\sf{ \; SolutioN \; :- }}}}}}

 \dag \; {\underline{\underline{\pmb{\sf{ Calculating \; the \; Value \; of \; AC \; :- }}}}}

 \begin{gathered} \; \; \; \; \purple\longmapsto \; \; \red{\sf{ {Hypoenuse}^{2} = {Base}^{2} + {Height}^{2} }} \\ \\ \\ \end{gathered}

 \begin{gathered} \; \; \; \; \longmapsto \; \; \sf{ AC = \sqrt{ \bigg( {BC} \bigg)^{2} + { \bigg( AB \bigg) }^{2} } } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \; \; \; \longmapsto \; \; \sf{ AC = \sqrt{ {\bigg( 7 \bigg)}^{2} + { \bigg( 24 \bigg)}^{2} } } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \; \; \; \longmapsto \; \; \sf{ AC = \sqrt{ 49 + 576 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \; \; \; \longmapsto \; \; \sf{ AC = \sqrt{ 625 } } \\ \\ \\ \end{gathered}

 \begin{gathered} \; \; \; \; \longmapsto \; \; {\underline{\boxed{\orange{\pmb{\sf{ AC_{ \; Hypotenuse} = 25 \; cm }}}}}} \; \bigstar \\ \\ \\ \end{gathered}

 \\ \\

 \dag \; {\underline{\underline{\pmb{\sf{ Calculating \; the \; Value \; of \; Cos \; A \; :- }}}}}

 \begin{gathered} \; \; \; \; \pink\longrightarrow \; \; \purple{\sf{ Cos \; A = \dfrac{Base}{Hypotenuse} }} \\ \\ \\ \end{gathered}

 \begin{gathered} \; \; \; \; \longrightarrow \; \; {\underline{\boxed{\color{darkblue}{\pmb{\sf{ Cos \; A = \dfrac{24}{25} }}}}}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Value of Cos A is 24/25 .

 \\ \qquad{\rule{200pt}{2pt}}

Attachments:
Answered by Anonymous
97

 \\ \\

\star\;{\underline{\boxed{\pmb{\green{\frak{\;Given\; :-}}}}}}

 \\ \\

  • \angleB = 90°
  • AB = 24 cm
  • BC = 7 cm

 \\ \\

\star\;{\underline{\boxed{\pmb{\green{\frak{\;To Find\; :-}}}}}}

 \\ \\

\Huge\sf\implies\large\underline\color{Red}{\sf{Value\:of\:Cos\:A}}

 \\ \\

\star\;{\underline{\boxed{\pmb{\green{\frak{\; Solution\; :-}}}}}}

 \\ \\

\huge\rightarrow In Right Angled ABC , By using Pythagoras theorem we have ,

 \\ \\

\huge\rightarrow \tt\:\color{Blue}{AC²\:=\:AB²\:+\:BC²}

 \\ \\

\huge\rightarrow  \tt \: (24)² + (7)²

 \\ \\

\Huge\sf\implies  \tt \:576 + 49

 \\ \\

\star\;{\underline{\boxed{\pmb{\pink{\frak{\;625\; :-}}}}}}

 \\ \\

\therefore AC = +25 cm

 \\ \\

\because side cannot be negative

 \\ \\

Now ,

 \\ \\

\Huge\sf\implies\color{Red}{cosA\:=\: \dfrac{B}{H}}

 \\ \\

\Huge\sf\implies \dfrac{Ab}{AC}

 \\ \\

\Huge\sf\implies \dfrac{24}{25}

Attachments:
Similar questions