Two water taps together can fill a tank 9 and 3/8 hours. The tap of larger diameter takes 10 hour less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.'
Please all friends given thanks my answers.
Answers
Answer:
15 hours.
Step-by-step explanation:
Let the tap with smaller diameter fills the tank alone in x hours
Let the tap with larger diameter fills the tank alone in (x – 10) hours.
In 1 hour, the tap with a smaller diameter can fill 1/x part of the tank.
In 1 hour, the tap with larger diameter can fill 1/(x – 10) part of the tank.
The tank is filled up in 75/8 hours.
Thus, in 1 hour the taps fill 8/75 part of the tank.
1/x + 1/(x-10) = 8/75
(x-10) + x / x(x-10) = 8/75
2x – 10/x(x-10) = 8/75
75 (2x-10) = 8(x2-10x) by cross multiplication
150x – 750 = 8x2 – 80x
8x2 − 230x + 750 = 0
4x2−115x + 375 = 0
4x2 − 100x −15x + 375 = 0
4x(x−25)−15(x−25) = 0
(4x−15)(x−25) = 0
4x−15 = 0 or x – 25 = 0
x = 15/4 or x = 25
Case 1: When x = 15/4
Then x – 10 = 15/4 – 10
⇒ 15-40/4
⇒ -25/4
Time can never be negative so x = 15/4 is not possible.
Case 2: When x = 25 then
x – 10 = 25 – 10 = 15
∴ The tap of smaller diameter can separately fill the tank in 25 hours and the time taken by the larger tap to fill the tank = ( 25 – 10 ) = 15 hours.
Answer:
thank u for thanking my answers ☺❤❤☺