Math, asked by ItzAwesomeGirl, 4 months ago

\huge\tt\pink{Chapter \: :- \: Functions}

\huge\bold{Question \: :}

The range of |x-2| is ?

\huge\sf\purple{✓No \: Google
\huge\sf\purple{✓No \: Spamming}

Answers

Answered by shadowsabers03
12

We need to find range of,

\longrightarrow f(x)=|x-2|

Let,

\longrightarrow y=|x-2|

or,

\longrightarrow y=\sqrt{(x-2)^2}

Since \sqrt x\in[0,\ \infty) for every x in its domain, we get,

\longrightarrow y\in[0,\ \infty)\quad\quad\dots(1)

Then,

\longrightarrow y^2=(x-2)^2

\longrightarrow y^2=x^2-4x+4

\longrightarrow x^2-4x+(4-y^2)=0

Now we have a quadratic equation in which the discriminant should be non - negative.

\longrightarrow (-4)^2-4(4-y^2)\geq0

\longrightarrow 16-16+4y^2\geq0

\longrightarrow4y^2\geq0

\longrightarrow y^2\geq0

\Longrightarrow y\in\mathbb{R}\quad\quad\dots(2)

Taking (1)\land (2), we get,

\longrightarrow y\in[0,\ \infty)

Hence the range is,

\longrightarrow \underline{\underline{ f(x)\in[0,\ \infty)}}

Answered by MrsZiddi
2

We need to find range of,

\longrightarrow f(x)=|x-2|⟶f(x)=∣x−2∣

Let,

\longrightarrow y=|x-2|⟶y=∣x−2∣

or,

\longrightarrow y=\sqrt{(x-2)^2}⟶y=

(x−2)

2

Since \sqrt x\in[0,\ \infty)

x

∈[0, ∞) for every xx in its domain, we get,

\longrightarrow y\in[0,\ \infty)\quad\quad\dots(1)⟶y∈[0, ∞)…(1)

Then,

\longrightarrow y^2=(x-2)^2⟶y

2

=(x−2)

2

\longrightarrow y^2=x^2-4x+4⟶y

2

=x

2

−4x+4

\longrightarrow x^2-4x+(4-y^2)=0⟶x

2

−4x+(4−y

2

)=0

Now we have a quadratic equation in which the discriminant should be non - negative.

\longrightarrow (-4)^2-4(4-y^2)\geq0⟶(−4)

2

−4(4−y

2

)≥0

\longrightarrow 16-16+4y^2\geq0⟶16−16+4y

2

≥0

\longrightarrow4y^2\geq0⟶4y

2

≥0

\longrightarrow y^2\geq0⟶y

2

≥0

\Longrightarrow y\in\mathbb{R}\quad\quad\dots(2)⟹y∈R…(2)

Taking (1)\land (2),(1)∧(2), we get,

\longrightarrow y\in[0,\ \infty)⟶y∈[0, ∞)

Hence the range is,

\longrightarrow \underline{\underline{ f(x)\in[0,\ \infty)}}⟶

f(x)∈[0, ∞)

Similar questions