The range of |x-2| is ?
Answers
We need to find range of,
Let,
or,
Since for every in its domain, we get,
Then,
Now we have a quadratic equation in which the discriminant should be non - negative.
Taking we get,
Hence the range is,
We need to find range of,
\longrightarrow f(x)=|x-2|⟶f(x)=∣x−2∣
Let,
\longrightarrow y=|x-2|⟶y=∣x−2∣
or,
\longrightarrow y=\sqrt{(x-2)^2}⟶y=
(x−2)
2
Since \sqrt x\in[0,\ \infty)
x
∈[0, ∞) for every xx in its domain, we get,
\longrightarrow y\in[0,\ \infty)\quad\quad\dots(1)⟶y∈[0, ∞)…(1)
Then,
\longrightarrow y^2=(x-2)^2⟶y
2
=(x−2)
2
\longrightarrow y^2=x^2-4x+4⟶y
2
=x
2
−4x+4
\longrightarrow x^2-4x+(4-y^2)=0⟶x
2
−4x+(4−y
2
)=0
Now we have a quadratic equation in which the discriminant should be non - negative.
\longrightarrow (-4)^2-4(4-y^2)\geq0⟶(−4)
2
−4(4−y
2
)≥0
\longrightarrow 16-16+4y^2\geq0⟶16−16+4y
2
≥0
\longrightarrow4y^2\geq0⟶4y
2
≥0
\longrightarrow y^2\geq0⟶y
2
≥0
\Longrightarrow y\in\mathbb{R}\quad\quad\dots(2)⟹y∈R…(2)
Taking (1)\land (2),(1)∧(2), we get,
\longrightarrow y\in[0,\ \infty)⟶y∈[0, ∞)
Hence the range is,
\longrightarrow \underline{\underline{ f(x)\in[0,\ \infty)}}⟶
f(x)∈[0, ∞)