Math, asked by Salmonpanna2022, 3 months ago


\huge \tt \pink{Question: - } \\
यदि \:  \frac{x}{(b - c)(b + c - 2a)}  =  \frac{y}{(c - a)(c + a - 2a)}  =  \frac{z}{(a - b)(a + b - 2c)} \:  है, \\
तो x+y+z का मूल्य कया है।

Please help me..​

Answers

Answered by mathdude500
9

\large\underline{\sf{Given- }}

 \sf \: \dfrac{x}{(b - c)(b + c - 2a)}  = \dfrac{y}{(c - a)(c + a - 2b)}  = \dfrac{z}{(a - b)(a + b - 2c)}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:x + y + z

\large\underline{\sf{Solution-}}

 \sf \:Let \:  \dfrac{x}{(b - c)(b + c - 2a)}  = \dfrac{y}{(c - a)(c + a - 2b)}  = \dfrac{z}{(a - b)(a + b - 2c)}  = k

\rm :\implies\:\dfrac{x}{(b - c)(b + c - 2a)}  = k

\rm :\longmapsto\:x = k(b - c)(b + c - 2a)

\rm :\longmapsto\:x =  k({b}^{2}  -  {c}^{2}  - 2a(b - c))

\rm :\longmapsto\: x=k({b}^{2}  -  {c}^{2}  + 2ac - 2ab) -  -  - (1)

Also,

\rm :\longmapsto\:\dfrac{y}{(c - a)(c + a - 2b)}  = k

\rm :\longmapsto\:y = k(c - a)(c + a - 2b)

\rm :\longmapsto\:y = k( {c}^{2}-{a}^{2}-2bc+2ba) -  - (2)

Again,

\rm :\longmapsto\:\dfrac{z}{(a - b)(a + b - 2c)}  = k

\rm :\longmapsto\:z = k(a - b)(a + b - 2c)

\rm :\longmapsto\:z = k( {a}^{2} -  {b}^{2} - 2ca + 2bc) -  - (3)

Now,

Adding equation (2), (3) and (4), we get

 \rm :\longmapsto\:\: x + y + z

\rm \:  = k({b}^{2}-{c}^{2}+2ac-2ab+{c}^{2}-{a}^{2}-2bc+2ba+{a}^{2}-{b}^{2}-2ca +2bc)

 \rm \:  =  \: k \:  \times  \: 0

 \rm \:  =  \: 0

Answered by arbudde0002
0

Answer:

okk dear ...the answer of this question will be like this......

Attachments:
Similar questions