Math, asked by visheshagarwal153, 9 months ago

\huge \tt Prove :

\sf \dfrac{ \cos A}{1- \tan A} + \dfrac{\sin A}{1-\cot A} = \cot A + \sin A

Answers

Answered by aayyuuss123
102

Answer:

I think it helps you..........

Please thanks my answer

Attachments:
Answered by Tomboyish44
63

Correction in the question:

\sf \dfrac{cosA}{1 - tanA} + \dfrac{sinA}{1 - cotA} = cosA + sinA

LHS:

\sf \Longrightarrow \dfrac{cosA}{1 - tanA} + \dfrac{sinA}{1 - cotA}

We know that:

⇒ tanA = sinA/cosA

⇒ cotA = cosA/sinA

\sf \Longrightarrow \dfrac{cosA}{1 - \Bigg\{\dfrac{sinA}{cosA}\Bigg\}} + \dfrac{sinA}{1 - \Bigg\{\dfrac{cosA}{sinA}\Bigg\}}

\sf \Longrightarrow \dfrac{cosA}{\Bigg\{\dfrac{cosA - sinA}{cosA}\Bigg\}} + \dfrac{sinA}{\Bigg\{\dfrac{sinA - cosA}{sinA}\Bigg\}}

\sf \Longrightarrow \Bigg\{cosA \times \dfrac{cosA}{cosA - sinA} \Bigg \} + \Bigg\{sinA \times \dfrac{sinA}{sinA - cosA} \Bigg \}

\sf \Longrightarrow\dfrac{cos^2A}{cosA - sinA} + \dfrac{sin^2A}{sinA - cosA}

We know that:

⇒ (a - b) = -(b - a)

\sf \Longrightarrow\dfrac{cos^2A}{cosA - sinA} - \dfrac{sin^2A}{cosA - sinA}

\sf \Longrightarrow\dfrac{cos^2A - sin^2A}{cosA - sinA}

We know that:

⇒ a² - b² = (a - b)(a + b)

\sf \Longrightarrow\dfrac{(cosA - sinA)(cosA + sinA)}{cosA - sinA}

(cosA - sinA) & (cosA - sinA) in the numerator and denominator will get cancelled.

\sf \Longrightarrow (cosA + sinA)

Hence proved.


mddilshad11ab: perfect explaination ✔️
Tomboyish44: Thank you!
Similar questions