Math, asked by Anonymous, 7 months ago


 \huge \tt{Question}

Find the point on the curve y = x³ - 3x where the tangent is parallel to the chord joining the points (1, -2) and (2, 2). ​

Answers

Answered by Anonymous
35

\large{\underline{\rm{\green{Solution:-}}}}

Here, y = (x³ - 3x)

\implies \rm \frac{dy}{dx}  =  \frac{d}{dx}  \: ( {x}^{3}  - 3x) \\

\implies {\boxed{ \rm {= 3 {x}^{2}  - 3}}}\\

Therefore, slope of tangent = 3x³ - 3.

Now, slope of the chord joining points (1, -2) and (2, 2) is

\implies \rm\frac{2 - ( - 2)}{2 - 1}  =  \frac{4}{1} = 4 \\

Since tangent is parallel to the chord joining (1, -2) and (2, 2).

 \therefore \: \rm 3 {x}^{2}  = 4 \:  \implies \:  {x}^{2}  =  \frac{7}{3}  \: \implies  x  = \pm  \sqrt{ \frac{7}{3} }  \\

\boxed{\rm When  \: \: x =  \sqrt{ \frac{7}{3} }}  \\

 \implies \rm Then \:  \: \: y = ( \sqrt{ \frac{7}{3} })^3 - 3. \sqrt{ \frac{7}{3} }  =  \frac{7}{3}  \sqrt{ \frac{7}{3} }  - 3 \sqrt{ \frac{7}{3} }  =  -  \frac{2}{3}  \sqrt{ \frac{7}{3} }  \\

\boxed{\rm When \:  \: x =  - \sqrt{ \frac{7}{3} }}  \\

 \implies \rm Then \:  \: \: y = ( -  \sqrt{ \frac{7}{3} })^3 - 3( - \sqrt{ \frac{7}{3} } ) = - \frac{7}{3}  \sqrt{ \frac{7}{3} }   +  3 \sqrt{ \frac{7}{3} }  =  \frac{2}{3}  \sqrt{ \frac{7}{3} }  \\

 \rm \: Thus \: required \: points \: are \: (\sqrt{ \frac{7}{3} },- \frac{2}{3}  \sqrt{ \frac{7}{3} }  \: and \: ( -  \sqrt{ \frac{7}{3} }, \frac{2}{3}  \sqrt{ \frac{7}{3} } ) \\

_______________________________________________________


Anonymous: Awesome as always! :)
Anonymous: Thank you! ♡
Similar questions