Math, asked by mrudulmahajan2009, 4 days ago

\huge\tt\red{P}\tt\pink{L}\tt\blue{E}\tt\green{A}\tt\purple{S}\tt\orange{E}



\huge\tt\red{A}\tt\pink{N}\tt\blue{S}\tt\green{W}\tt\purple{E}\tt\orange{R}
■correct answer will be marked as brainlist■
■ wrong answer will be reported ​■​

Attachments:

Answers

Answered by mathdude500
4

Given Question :-

 \sf \: If \:  {a}^{2} + \dfrac{1}{ {a}^{2} } = 27, \: find \: the \: value \: of \: a -  \dfrac{1}{a}

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\: {a}^{2}  + \dfrac{1}{ {a}^{2} } = 27

can be rewritten as

\rm :\longmapsto\: {(a)}^{2}  +  {\bigg[\dfrac{1}{a} \bigg]}^{2}  = 27

On Subtracting 2 from each term, we get

\rm :\longmapsto\: {(a)}^{2}  +  {\bigg[\dfrac{1}{a} \bigg]}^{2} - 2  = 27 - 2

\rm :\longmapsto\: {(a)}^{2}  +  {\bigg[\dfrac{1}{a} \bigg]}^{2} - 2 \times a \times \dfrac{1}{a}   = 25

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \:  {x}^{2} - 2xy +  {y}^{2} =  {(x - y}^{2} \: }}}

So, using this, we get

\rm :\longmapsto\: {\bigg[a - \dfrac{1}{a} \bigg]}^{2} = 25

\rm :\longmapsto\: {\bigg[a - \dfrac{1}{a} \bigg]}^{2} = 5 \times 5

\rm :\longmapsto\: {\bigg[a - \dfrac{1}{a} \bigg]}^{2} =  {5}^{2}

\rm \implies\:\boxed{ \tt{ \: a -  \frac{1}{a} =  \:  \pm \: 5 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Answered by guptaananya2005
0

Answer:

Option (a) is correct...

Similar questions