Math, asked by Anonymous, 3 months ago

{\huge{\tt{\red{❦︎Q}{\blue{ᴜᴇ}{\green{ᴇs}{\purple{ᴛɪ}{\orange{ᴏɴ}{\pink{࿐}}}}}}}}}



Attachments:

Answers

Answered by captverma
6

{\huge{\tt{\red{❦︎A}{\blue{n}{\green{s}{\purple{w}{\orange{e}{\pink{r}}}}}}}}}

42.3..

for rest..refer the attachment pls..

Attachments:
Answered by llMrIncrediblell
160

⠀⠀⠀⠀⠀⠀{\rm{\purple{\underline{\underline{★Required \:Answer★}}}}}

42.3 m

⠀⠀⠀⠀⠀{\rm{\pink{\underline{\underline{★Solution★}}}}}

{\rm{\red{\underline{\underline{Given : }}}}}

Angle of elevation of the bird flying at a distance of 100m from boy = 30°

Angle of elevation from a girl standing on a 20m high building = 45°

Both (boy and girl) are in opposite sides of the bird.

{\rm{\blue{\underline{\underline{To \:  Find: }}}}}

Distance of the girl from the bird.

{\rm{\purple{\underline{\underline{Formula \:  Used: }}}}}

 \longmapsto\sin \: 30° \:  =  \frac{1}{2}

\longmapsto\sin \: 45° \:  =  \frac{1}{ \sqrt{2} }

{\rm{\orange{\underline{\underline{Calculations : }}}}}

Let A be the position of the bird and E and C be the positions of the girl and the boy, respectively.

Then,

∠ACB = 30°,

∠AED = 45°,

AC = 100 m,

EF = 20 m

In right triangle ACB,

we have,

 \longmapsto\sin \: 30° \:  =  \frac{AB}{AC}

 \longmapsto \frac{1}{2}  =  \frac{AB}{100}

\longmapsto \: AB =  50 m

 \rm{AD = AB-BD}

 \rm{AD = 50  - EF}

 \rm{AD = 50 -  20 = 30 m}

In right triangle ADE,

we have,

 \longmapsto\sin \: 45° \:  =  \frac{AD}{AE}

 \longmapsto \frac{1}{ \sqrt{2} }  \:  =  \frac{30}{AE}

 \rm{AE = 30√2 =  42.3 m}

Therefore, the distance of bird from the girl is 42.3m

Attachments:
Similar questions