Math, asked by jack6778, 1 year ago


 \huge {\tt{solve : }}
 \small \sf{(i) \: x3 -  {4}^{2}  - x + 1 = (x - 2)}
 \small \sf{(ii) \:  {x}^{2}  \times + 3x + 1 =  {(x - 2)}^{2} }
 \small \sf{(iii) \:  {(x + 2)}^{2}  = 2x ({x}^{2}  - 1)}

Answers

Answered by dynamogirl
12

Here is your answer

Part 1

 {x}^{2}  + 3x + 1 =  {x}^{2}  + 4 - 4x \\  \\  {x}^{2}  -  {x}^{2}  + 3x + 4x + 1 - 4 = 0 \\  \\ 7x - 3 = 0

Part2

 {x}^{2}  + 4 + 4x = 2x( {x}^{2}  + 1 - 2 {x}^{2}  \\  \\  {x}^{2}  + 4 + 4x =2 {x}^{3}  + 2x - 4 {x}^{3}  \\  \\  {x}^{2}  + 4 + 4x + 2 {x}^{3} 2x = 0 \\  \\ 2 {x}^{3}  +  {x}^{2}  + 2x + 4 = 0

Part3

 {x}^{3}  -  {4}^{2}  - x + 1 = (x - 2) \\  \\  {x}^{3}  - 16  - x  + 1 - x + 2 = 0 \\  \\  {x}^{3}  - 2x - 13 = 0

No Thanks !! xD


jack6778: XD
jack6778: Hehe
Answered by Anonymous
10

 \huge { \fcolorbox{red}{blue}{Answer}}

1.x3 - 4 - x + 1 = (x - 2)

x3 - 16 - x + 1 = x - 2

x3 - 15 - x = x - 2

x3 - 15x - x + 2 = 0

x3 - 13- 2x = 0

x3 - 2x - 13 = 0

it can't be factories

2.x2 + 3x + 1 = x2 + 4 - 4x

x2 + 3x + 1 - x2 - 4 + 4x = 0

7x - 3 = 0

7x = 3

x = 3 </strong><strong>/</strong><strong>7

3.(x + 2)2 = 2(x2 - 1)

x2 + 4 + 4x = 2x3 - 2

x2 + 4x + 4 - 2x3 + 2 = 0

 - 2x3 + x2 + 2x + 6 = 0

 &lt;marquee &gt; hope its help you</strong><strong> </strong><strong>☺</strong><strong>✌</strong><strong>❤</strong><strong>


jack6778: Thanks
Anonymous: mention not
jack6778: Ok
Anonymous: yes
Similar questions