Math, asked by Anonymous, 3 months ago

 \huge\underbrace {\color {orange}\bf \: Question \:}

Find the length of the arc x² + y² - 2ax = 0 in the first quadrant​

Answers

Answered by mathdude500
29

Solution :-

The given curve is

\rm :\longmapsto\: {x}^{2} +  {y}^{2} - 2ax = 0

which represents a circle. and can be rewritten as

\rm :\longmapsto\: ({x}^{2} - 2ax) +  {y}^{2}  = 0

\rm :\longmapsto\: ({x}^{2} - 2ax +  {a}^{2} -  {a}^{2} ) +  {y}^{2}  = 0

\rm :\longmapsto\: {(x - a)}^{2}  +  {y}^{2}  -  {a}^{2}  = 0

\rm :\longmapsto\: {(x - a)}^{2}  +  {y}^{2} = {a}^{2} -  -  - (1)

which represents a Circle with

 \red{\rm :\longmapsto\:Center \:  (a ,0)} \\  \red{\rm :\longmapsto\:radius \:  =  \: a \: }

On Differentiating equation (1) w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\bigg( {(x - a)}^{2} +  {y}^{2} \bigg) = \dfrac{d}{dx} {a}^{2}

\rm :\longmapsto\:\dfrac{d}{dx} {(x - a)}^{2}  + \dfrac{d}{dx} {y}^{2}  = \dfrac{d}{dx} {a}^{2}

\rm :\longmapsto\:2(x - a) + 2y\dfrac{dy}{dx} = 0

  \:  \:  \:  \: \:  \:  \:  \:  \red{ \bigg \{ \because \: \dfrac{d}{dx} {x}^{n} = n {x}^{ n- 1} \: and \: \dfrac{d}{dx}k = 0   \bigg \}}

\rm :\longmapsto\:\dfrac{dy}{dx} =  - \dfrac{(x - a)}{y}  -  -  - (2)

For the length of arc of circle, in first quadrant, the values of x varies from x = 0 to x = 2a

Now, we know that

\rm :\longmapsto\:Length \: of \: arc  =  \displaystyle\int^{2a}_{0} \sqrt{1 +  {\bigg(\dfrac{dy}{dx} \bigg) }^{2} }dx

\rm \:  \:  =  \:  \:   \displaystyle\int^{2a}_{0} \sqrt{1 +  {\bigg(\dfrac{ - (a - x)}{y} \bigg) }^{2} }dx

\rm \:  \:  =  \:  \:   \displaystyle\int^{2a}_{0} \sqrt{1 +  {\bigg(\dfrac{a - x}{y} \bigg) }^{2} }dx

\rm \:  \:  =  \:  \:   \displaystyle\int^{2a}_{0} \sqrt{1 +  \dfrac{ {(a - x)}^{2} }{ {y}^{2} } }dx

\rm \:  \:  =  \:  \:   \displaystyle\int^{2a}_{0} \sqrt{1 +  \dfrac{ {(a - x)}^{2} }{ 2ax - {x}^{2} } }dx

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \: {y}^{2}  +  {x}^{2} - 2ax = 0  \bigg \}}

\rm \:  \:  =  \:  \:   \displaystyle\int^{2a}_{0} \sqrt{\dfrac{ 2ax -  {x}^{2} +  {(a - x)}^{2} }{ 2ax - {x}^{2} } }dx

\rm \:  \:  =  \:  \:   \displaystyle\int^{2a}_{0} \sqrt{\dfrac{ \cancel{ 2ax } -  \: \cancel{{x}^{2}} + \cancel  {x}^{2}  +  {a}^{2}   -  \cancel{2ax}}{ 2ax - {x}^{2} } }dx

\rm \:  \:  =  \:  \: \displaystyle\int^{2a}_{0}\dfrac{a}{ \sqrt{2ax -  {x}^{2} } } dx

\rm \:  \:  =  \:  \: \displaystyle\int^{2a}_{0}\dfrac{a}{ \sqrt{ - ({x}^{2}  - 2ax)} } dx

\rm \:  \:  =  \:  \: \displaystyle\int^{2a}_{0}\dfrac{a}{ \sqrt{ - ({x}^{2}  - 2ax +  {a}^{2} -  {a}^{2}  )} } dx

\rm \:  \:  =  \:  \: \displaystyle\int^{2a}_{0}\dfrac{a}{ \sqrt{ - ({(x - a)}^{2}   -  {a}^{2}  )} } dx

\rm \:  \:  =  \:  \: \displaystyle\int^{2a}_{0}\dfrac{a}{ \sqrt{ {a}^{2}  - {(x - a)}^{2}} } dx

\rm \:  \:  =  \:  \: a\bigg( {sin}^{ - 1}\dfrac{x - a}{a}  \bigg)_0^{2a}

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:  \displaystyle\int \tt \: \dfrac{dx}{ {a}^{2}  -  {x}^{2}}  =  {sin}^{ - 1}\dfrac{x}{a} + c  \bigg \}}

\rm \:  \:  =  \:  \: a\bigg( {sin}^{ - 1}\dfrac{2a - a}{a} -  {sin}^{ - 1}\dfrac{0 - a}{a}    \bigg)

\rm \:  \:  =  \:  \: a\bigg( {sin}^{ - 1}\dfrac{a}{a} -  {sin}^{ - 1}\dfrac{ - a}{a}    \bigg)

\rm \:  \:  =  \:  \: a( {sin}^{ - 1}1 +  {sin}^{ - 1} 1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:  {sin}^{ - 1} ( - x) =  -  {sin}^{ - 1}x\bigg \}}

\rm \:  \:  =  \:  \: a\bigg(\dfrac{\pi}{2}  + \dfrac{\pi}{2} \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \: {sin}^{ - 1} 1 = \dfrac{\pi}{2}\bigg \}}

\rm \:  \:  =  \:  \: a\pi \: units

  \:  \:  \:  \:  \:  \:  \: \boxed{\bf\implies \:Length \: of \: arc \:  =  \: a\pi \: units}

Additional Information :-

1. Length of arc of parametric curve is

\rm :\longmapsto\:Length \: of \: arc  =  \displaystyle\int^{t_2}_{t_1} \sqrt{ {\bigg(\dfrac{dx}{dt} \bigg) }^{2}  +  {\bigg(\dfrac{dy}{dt} \bigg) }^{2} }dt

2. Length of arc of polar curves is

\rm :\longmapsto\:Length \: of \: arc  =  \displaystyle\int^{ \beta }_{ \alpha } \sqrt{ {r}^{2}  +  {\bigg(\dfrac{dr}{d \theta} \bigg) }^{2} }d \theta

Attachments:
Similar questions