Science, asked by xdlol40, 5 months ago

\huge\underbrace{\purple{Q}\orange{u}\red{e}\pink{s}\blue{t}{i}\blue{o}\green{n}}


question in above attachment
don't spam
and don't copy from google ​

Attachments:

Answers

Answered by hotcupid16
1

\displaystyle\huge\red{\underline{\underline{Solution}}}

⊙ TO DETERMINE

In Boolean Algebra the complement of ( a.b + a.c )

⊙ PROPERTY TO BE IMPLEMENTED

1. DISTRIBUTIVE PROPERTY

 \sf{a.(b + c) = a.b + a.c \: }

2. DE MORGAN'S LAW

 \sf{(i) \:  \:  \:  \: (a.b) '=a' +  \:  b'}

 \sf{(ii) \:  \:  \:  \: (a+b) '=a'. \:  b'}

⊙ CALCULATION

 \sf{The \:  complement \:  of \:  \:  ( a.b + a.c )}

 =  \sf{ ( a.b + a.c ) ' \: }

 =  \sf{[ \: a.(b +c ) \: ] '} \:  \:  \: ( \:  using \: property \: 1 \: )

 =  \sf{[ \: a ' + (b +c )  '} \:  ]\:  \: ( \:  using \: property \: 2(i)\: )

 =  \sf{ \: a ' + ( \: b' .c  ' \: )} \:  \:  \: ( \:  using \: property \: 2(ii)\: )

⊙ RESULT

 \boxed{  \sf{ \:  \:  \:  ( a.b + a.c ) ' \:  =  \: a ' + ( \: b' .c  ' \: ) \:  \:  \:  }}

━━━━━━━━━━━━━━━━

Answered by Anonymous
1

Explanation:

Given :

Area of rhombus = 120 cm²

Length of diagonal = 8 cm

To find :

Length of another diagonal

According to the question,

\sf{ :  \implies Area \: of \: rhombus =  \dfrac{1}{2}  \times d _{1} \times d_{2}   }

 \\

 \sf  : \implies{ {120 \: cm}^{2} =  \dfrac{1}{2}   \times 8 \: cm \times x}

 \\

 \sf :  \implies{ {120 \: cm}^{2} \times 2 = 8 \: cm \times x }

 \\

 \sf :  \implies{ {240 \: cm}^{2}  = 8 \: cm \times x}

 \\

 \sf  : \implies{ \dfrac{240}{8}  \: cm = x}

 \\

 { \underline{ \boxed{  \sf  \pink{ :  \implies{   \bm3 \bm0 \: c m =x}}}}}

{ \therefore{ \underline{\sf{So \:,the \:  length \:  of \:  other \:  diagonal  \: is \:    3 0 \: cm}}}}

Similar questions