Math, asked by ItzAkshat, 8 months ago


  \huge \underline{\bf Prove  \: that}

 {  \tan}{ - 1}\frac{x}{y}  -  { \tan}^{ - 1}   \frac{x + y}{x - y}=  \frac{\pi}{4} \\  \\

Answers

Answered by BrainlyPopularman
40

Correct Question :

• Prove that –

  \\ \implies\bf{ \tan}^{ - 1}\dfrac{x}{y} - { \tan}^{ - 1} \dfrac{x-y}{x+y}= \dfrac{\pi}{4} \\

ANSWER :

TO PROVE :

  \\ \implies\bf{ \tan}^{ - 1}\dfrac{x}{y} - { \tan}^{ - 1} \dfrac{x-y}{x+y}= \dfrac{\pi}{4} \\

SOLUTION :

  \\ \implies\bf{ \tan}^{ - 1}\dfrac{x}{y} - { \tan}^{ - 1} \dfrac{x-y}{x+y}= \dfrac{\pi}{4} \\

• Let's take L.H.S. –

  \\ \:  =  \: \bf{ \tan}^{ - 1} \bigg(\dfrac{x}{y} \bigg) - { \tan}^{ - 1}  \bigg(\dfrac{x-y}{x+y} \bigg)\\

• We know that –

  \\ \implies \bf{ \tan}^{ - 1}(x)- { \tan}^{ - 1}(y) =  { \tan}^{ - 1} \bigg( \dfrac{x - y}{1 + xy}  \bigg) \\

• So that –

  \\ \:  \:  \bf =  \:  \:  { \tan}^{ - 1} \left( \dfrac{ \dfrac{x}{y}  -  \dfrac{x + y}{x - y}}{1 + \dfrac{x}{y} .\dfrac{x-y}{x+y}}  \right) \\

  \\ \:  \:  \bf =  \:  \:  { \tan}^{ - 1} \left( \dfrac{ \dfrac{x(x + y) - y(x - y)}{y(x  + y)}}{\dfrac{y(x  + y) + x(x  -  y)}{y(x + y)}}  \right) \\

  \\ \:  \:  \bf =  \:  \:  { \tan}^{ - 1} \left( \dfrac{x(x - y) - y(x + y)}{y(x - y) + x(x + y)}  \right) \\

  \\ \:  \:  \bf =  \:  \:  { \tan}^{ - 1} \left( \dfrac{x(x +  y) - y(x -  y)}{y(x  + y) + x(x  - y)}  \right) \\

  \\ \:  \:  \bf =  \:  \:  { \tan}^{ - 1} \left( \dfrac{ {x}^{2} + xy- xy +  {y}^{2} }{xy +  {y}^{2} +  {x}^{2} - xy }  \right) \\

  \\ \:  \:  \bf =  \:  \:  { \tan}^{ - 1} \bigg( \dfrac{ {x}^{2} +{y}^{2} }{{y}^{2} +  {x}^{2} }  \bigg) \\

  \\ \:  \:  \bf =  \:  \:  { \tan}^{ - 1} \bigg( \dfrac{ {x}^{2} +{y}^{2} }{{x}^{2} +  {y}^{2} }  \bigg) \\

  \\ \:  \:  \bf =  \:  \:  { \tan}^{ - 1}(1)\\

  \\ \:  \:  \bf =  \:  \: \dfrac{\pi}{4} \\

  \\ \:  \:  \bf =  \:  \: R.H.S.  \\

  \\ \: \:  \:  \:  \large { \underline{ \underline{\bf Hence \:  \: Proved}}}  \\


mddilshad11ab: Wonderful explaination ✔️
BrainlyPopularman: Thanks bro
Similar questions