Math, asked by Anonymous, 10 months ago

 \huge \underline \bold \orange {Question}

\mathcal{PLEASE \: SOLVE \: THIS }

Attachments:

Answers

Answered by Anonymous
25

{\huge{\bf{\red{\underline{Question\:1:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger \: {\sf{ x =  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  -  \sqrt{3} }  \:    \:  \:  \:  and \:  \: y  =  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} }  }} \\ \\

{\bf{\blue{\underline{Now:}}}}

Take,

 : \implies{\sf{x =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} } }} \\ \\

Rationalize,

 : \implies{\sf{x =  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }  \times  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5}  +  \sqrt{3} } }} \\ \\

 : \implies{\sf{x =  \frac{( \sqrt{5}  +  \sqrt{3} ) ^{2} }{( \sqrt{5} ) ^{2} -  (\sqrt{3})  ^{2} } }} \\ \\

  \bigstar \:   \boxed{\sf{{x}^{2}  -  {y}^{2}  = (x - y)(x + y)}} \\ \\

  \bigstar \:   \boxed{\sf{  \purple{{(x + y)}^{2}  =  {x}^{2} +  {y}^{2}   + 2xy}}} \\ \\

 : \implies{\sf{  \frac{( \sqrt{5}) ^{2}   + ( { \sqrt{3})  ^{2} + 2 \sqrt{3}  \sqrt{2}  } }{( \sqrt{5}) ^{2}   - ( { \sqrt{3} )}^{2} } }} \\ \\

 : \implies{\sf{  \frac{5 + 3 + 2 \sqrt{3}  \sqrt{5} }{5 - 3} }} \\ \\

 : \implies{\sf{  \frac{8 + 2 \sqrt{3}  \sqrt{5} }{2} }} \\ \\

 : \implies{\sf{  \frac{ \cancel2(4 +  \sqrt{3}  \sqrt{5}) }{ \cancel2} }} \\ \\

 : \implies{\sf{ 4 +  \sqrt{3 \times 5} }} \\ \\

 :  \implies \boxed{\sf{ x = 4 +  \sqrt{15}}} \\ \\

__________________________________

Now,

 : \implies{\sf{ y =  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} } }} \\ \\

Rationalize,

 : \implies{\sf{  \frac{ \sqrt{5} -  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} } \times  \frac{ \sqrt{5}  -  \sqrt{3} }{ \sqrt{5 }-  \sqrt{3} }   }} \\ \\

 : \implies{\sf{  \frac{( { \sqrt{5} - \sqrt{3}  ) }^{2} }{( { \sqrt{5}) ^{2}  - ( { \sqrt{3} )}^{2}  } } }} \\ \\

 : \implies{\sf{  \frac{5 + 3 - 2 \sqrt{5}  \sqrt{3} }{2} }} \\ \\

 : \implies{\sf{  \frac{8 -  2\sqrt{15}  }{2} }} \\ \\

 : \implies{\sf{  \frac{ \cancel2(4 -  \sqrt{3}  \sqrt{5}) }{ \cancel2} }} \\ \\

 : \implies{\sf{ 4 -  \sqrt{3 \times 5} }} \\ \\

 :  \implies \boxed{\sf{ x = 4 -  \sqrt{15}}} \\ \\

___________________________________

 : \implies{\sf{  {x}^{2} +  {y}^{2}  }} \\ \\

 : \implies{\sf{  {(4  +   \sqrt{15}) }^{2} +  {(4 -  \sqrt{15} })^{2}  }} \\ \\

 : \implies{\sf{ (4 +  \sqrt{15} + 4  -   \sqrt{15} ) ^{2}  - 2 \times[ (4 +  \sqrt{15})(4 -  \sqrt{15} ) ] }} \\ \\

 : \implies{\sf{ (4  + 4 ) ^{2}  - 2 [\times (4 +  \sqrt{15})(4 -  \sqrt{15} )  ]}} \\ \\

 : \implies{\sf{ (8) ^{2}  - 2 \times    ({4}^{2}  - ( \sqrt{15} ) ^{2}  )}} \\ \\

 : \implies{\sf{  64 - 2 \times( 16 - 15)}} \\ \\

 : \implies{\sf{  64 - 2}} \\ \\

 : \implies \boxed{\sf{  {x}^{2} +  {y}^{2}   = 62}} \\ \\

___________________________________

{\huge{\bf{\red{\underline{Question\:2:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \star \:  \: {\sf{  \green{ \bigg( \frac{81}{16}   \bigg)^{ \frac{ - 3}{4} }  \times   \bigg \{  \bigg( \frac{25}{9}  \bigg) ^{ \frac{ - 3}{2} }  \div  \bigg( \frac{5}{2}  \bigg) ^{ - 3}  \bigg\} =1}} } \\ \\

Take L.H.S

   : \implies \:  \: {\sf{ \bigg( \frac{( {3)}^{4} }{( {2)}^{4} }   \bigg)^{ \frac{ - 3}{4} }  \times   \bigg \{  \bigg( \frac{( {5)}^{2} }{( {3)}^{2} }  \bigg) ^{ \frac{ - 3}{2} }  \div  \bigg( \frac{5}{2}  \bigg) ^{ - 3}  \bigg\} }}  \\ \\

   : \implies \:  \: {\sf{ \bigg( \frac{( {3)} }{( {2)}}   \bigg)^{ 4 \times \frac{ - 3}{4}  }  \times   \bigg \{  \bigg( \frac{( {5)} }{( {3)} }  \bigg) ^{ 2 \times \frac{ - 3}{2} }  \div  \bigg( \frac{5}{2}  \bigg) ^{ - 3}  \bigg\} }}  \\ \\

   : \implies \:  \: {\sf{ \bigg( \frac{( {3)} }{( {2)}}   \bigg)^{  - 3  }  \times   \bigg \{  \bigg( \frac{( {5)} }{( {3)} }  \bigg) ^{  - 3 }  \div  \bigg( \frac{5}{2}  \bigg) ^{ - 3}  \bigg\} }}  \\ \\

   : \implies \:  \: {\sf{ \bigg( \frac{ {2} }{{3}}   \bigg)^{   3  }  \times   \bigg \{  \bigg( \frac{{3} }{ {5} }  \bigg) ^{   3 }  \div  \bigg( \frac{2}{5}  \bigg) ^{ 3}  \bigg\} }}  \\ \\

   : \implies \:  \: {\sf{ \bigg( \frac{ {2} }{{3}}   \bigg)^{   3  }  \times   \bigg \{  \bigg( \frac{{3} }{ {5} }  \bigg) ^{   3 }   \times  \bigg( \frac{5}{2}  \bigg) ^{ 3}  \bigg\} }}  \\ \\

   : \implies \:  \: {\sf{ \bigg( \frac{ {2} }{{3}}   \bigg)^{   3  }  \times   \bigg ( \frac{{3} }{ {5} }  \bigg) ^{   3 }   \times  \bigg( \frac{5}{2}  \bigg) ^{ 3}   }}  \\ \\

   : \implies \:  \: {\sf{ \bigg( \frac{ {2} }{{3}}    \times    \frac{{3} }{ {5} }    \times   \frac{5}{2}  \bigg) ^{ 3}   }}  \\ \\

 : \implies{\sf{ (2) ^{3} \times ( {2)}^{ - 3}   \times  {(3)}^{3} \times ( {3)}^{ - 3}  \times ( {5)}^{3}  \times ( {5)}^{ - 3}  }} \\ \\

 : \implies{\sf{ ( {2)}^{ 3- 3}   \times   ( {3)}^{ 3- 3}  \times ( {5)}^{3 - 3}  }} \\ \\

 : \implies{\sf{ ( {2)}^{ 0}   \times   ( {3)}^{ 0}  \times ( {5)}^{0}  }} \\ \\

 : \implies{\sf{ 1}} \\ \\

Hence, L.HS=R.HS

Answered by dangerousqueen01
5

\mathfrak{\huge{\red{\underline{\underline{Answer}}}}}

\small\sf\blue{\underline{Both \:  answers  \: are \:  there  \: in \:   the}{ \underline{  \: attachment  \: above \: }}}

Attachments:
Similar questions