English, asked by ooo0, 2 months ago

\huge\underline\bold\red{Question}

if 3 angles of a quadrilateral are 100 degree, 75 degree and 105 degree then the measurement of fourth angle is ???
ㅤㅤㅤ Don't Spam !! ​

Answers

Answered by Anonymous
228

\huge{\underline{\mathcal{\red{A}\green{n}\pink{s}\orange{w}\blue{e}\pink{R:-}}}}

\rule{200px}{.3ex}

\large\underline\bold\red{Given:-}

The angles are:-

100°, 75°, and 105° .

\large\underline\bold\red{To\:Find:-}

The fourth angle = ?

\large\underline\bold\red{Solution:-}

As We Know :- The sum of four angles of a quadrateral = 360°

Now let the unknown angle be = x

Then,

100° + 75° + 105° + x = 360°

\implies 175° + 105° + x = 360°

\implies 280° + x = 360°

\implies x = 360° - 280°

\implies x = 80°

\therefore\large\underline\bold\red{The\:Forth\:Angle\:is\:80°}

\rule{250px}{.3ex}

\large\underline\bold\red{Properties\:of\:Quadrilateral:-}

https://brainly.in/question/36114500?

Answered by Anonymous
83

Answer:

Given :-

  • Three angles of a quadrilateral are 100 degree, 75 degree and 105 degree.

To Find :-

  • What is the measurement of the fourth angles.

Solution :-

Let,

\mapsto Fourth angle of a quadrilateral be x

As we know that :

\bigstar \: \sf\boxed{\bold{\pink{Sum\: of\: four\: angle\: of\: quadrilateral =\: 360^{\circ}}}}\\

According to the question by using the formula we get,

\longrightarrow \sf 100^{\circ} + 75^{\circ} + 105^{\circ} + x =\: 360^{\circ}

\longrightarrow \sf 175^{\circ} + 105^{\circ} + x =\: 360^{\circ}

\longrightarrow \sf 280^{\circ} + x =\: 360^{\circ}

\longrightarrow \sf x =\: 360^{\circ} - 280^{\circ}

\longrightarrow \sf\bold{\red{x =\: 80^{\circ}}}

\therefore The measurement of fourth angle is 80°.

\\

VERIFICATION :-

\implies \sf 100^{\circ} + 75^{\circ} + 105^{\circ} + x =\: 360^{\circ}

By putting x = 80° we get,

\implies \sf 100^{\circ} + 75^{\circ} + 105^{\circ} + 80^{\circ} =\: 360^{\circ}

\implies \sf\bold{\purple{360^{\circ} =\: 360^{\circ}}}

Hence, Verified.

Similar questions