The cost of 2 kg of apples and 1kg of grapes on a day was found to be Rs.160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs.300....
Answers
Answer:
Solution: Let cost each kg of apples = Rs x
Cost of each kg of grapes = Rs y
Given that The cost of 2 kg of apples and 1kg of grapes on a day was found to be Rs 160
So that
2 x + y = 160 … (1)
2x = 160 - y
x = (160 – y)/2
Let y = 0 , 80 and 160 we get
X = (160 – ( 0 ))/2 = 80
X = (160- 80 )/2 = 40
X = (160 – 2 × 80 )/2 = 0
Given that the cost of 4 kg of apples and 2 kg of grapes is Rs 300
so we get
4 x + 2 y = 300 … (2)
Divide by 2 we get
2 x + y = 150
Subtract 2x both side we get
Y = 150 – 2 x
Plug x = 0 , 50 , 100 we get
Y = 150 – 2×0 = 150
Y = 150 – 2 × 50 = 50
Y = 150 – 2 × (100 ) = - 50
Algebraic representation
2 x + y = 160 … (1)
4 x + 2 y = 300 … (2)
Step-by-step explanation:
Step-by-step explanation:
Let cost each kg of apples = Rs x
Cost of each kg of grapes = Rs y
Given that The cost of 2 kg of apples and 1kg of grapes on a day was found to be Rs 160
So that
2 x + y = 160 … (1)
2x = 160 - y
x = (160 – y)/2
Let y = 0 , 80 and 160 we get
X = (160 – ( 0 ))/2 = 80
X = (160- 80 )/2 = 40
X = (160 – 2 × 80 )/2 = 0
Given that the cost of 4 kg of apples and 2 kg of grapes is Rs 300
so we get
4 x + 2 y = 300 … (2)
Divide by 2 we get
2 x + y = 150
Subtract 2x both side we get
Y = 150 – 2 x
Plug x = 0 , 50 , 100 we get
Y = 150 – 2×0 = 150
Y = 150 – 2 × 50 = 50
Y = 150 – 2 × (100 ) = - 50
Algebraic representation
2 x + y = 160 … (1)
4 x + 2 y = 300 … (2)