Math, asked by Anonymous, 1 month ago


 \huge \underline { \fbox \purple{Question \: : - }}


The expression 2x³ + ax² + bx – 2 leaves remainder 7 and 0 when divided by 2x – 3 and x + 2 respectively. Calculate the values of a and b.

Note :- Spamming = 20 relevant answers reported.

Wrong answer = 5 relevent answers reported.

Answers

Answered by MaTaehyung
21

Answer:

I hope this will be correct and it will help you

Attachments:
Answered by BrainlyRish
8

❍ Let's Consider p(x) = 2x³ + ax² + bx - 2

Given that ,

:\implies \sf{2x - 3= 0} \\\\:\implies \sf{2x = 3}\\\\ :\implies \sf{x =\dfrac{3}{2}}\\\\

\underline {\sf{\star\:Now \: By \: Substituting \: x=\dfrac{3}{2} \: in \: p(x) \::}}\\

\therefore \sf{ 2 \bigg( \dfrac{3}{2}\bigg)^{3} + a\bigg(\dfrac{3}{2}\bigg)^{2} + b\bigg( \dfrac{3}{2}\bigg) -2 }

  • On dividing p(x) by 2x - 3 , it's leave a remainder 7 .

:\implies \sf{ 2 \bigg( \dfrac{3}{2}\bigg)^{3} + a\bigg(\dfrac{3}{2}\bigg)^{2} + b\bigg( \dfrac{3}{2}\bigg) -2 = 7 } \\\\

:\implies \sf{ 2 \bigg( \dfrac{3}{2}\bigg)^{3} + a\bigg(\dfrac{3}{2}\bigg)^{2} + b\bigg( \dfrac{3}{2}\bigg)  = 7+ 2 } \\\\

:\implies \sf{ 2 \bigg( \dfrac{3}{2}\bigg)^{3} + a\bigg(\dfrac{3}{2}\bigg)^{2} + b\bigg( \dfrac{3}{2}\bigg)  = 9 } \\\\

:\implies \sf{ 2 \times \dfrac{27}{8} + a\times \dfrac{9}{4} + b\times \dfrac{3}{2}  = 9 } \\\\

:\implies \sf{ \cancel {2} \times \dfrac{27}{\cancel {8}} + a\times \dfrac{9}{4} + b\times \dfrac{3}{2}  = 9 } \\\\

:\implies \sf{  \dfrac{27}{4} + a\times \dfrac{9}{4} + b\times \dfrac{3}{2}  = 9 } \\\\

:\implies \sf{  \dfrac{27}{4} +  \dfrac{9a}{4} +  \dfrac{3b}{2}  = 9 } \\\\

:\implies \sf{  \dfrac{27 + 9a + 6b }{4}   = 9 } \\\\

:\implies \sf{  27 + 9a + 6b    = 9\times 4 } \\\\

:\implies \sf{  27 + 9a + 6b    = 36 } \\\\

:\implies \sf{    9a + 6b     = 36 -27 } \\\\

:\implies \sf{    9a + 6b     = 9 } \\\\

:\implies \sf{    9a + 6b -9    = 0 } \\\\

:\implies \sf{    \bigg(3a + 2b - 3     = 9 \bigg) }\:\: \longrightarrow Eq.1 \\\\

Given that ,

:\implies \sf{x + 2= 0} \\\\:\implies \sf{x = -2}\\\\

\underline {\sf{\star\:Now \: By \: Substituting \: x= -2 \: in \: p(x) \::}}\\

\therefore \sf{ 2 \bigg( -2 \bigg)^{3} + a\bigg(-2\bigg)^{2} + b\bigg( -2\bigg) -2 } \\\\

  • On dividing p(x) by x+2 , it's leave a remainder 0 .

:\implies \sf{ 2 \bigg( -2 \bigg)^{3} + a\bigg(-2\bigg)^{2} + b\bigg( -2\bigg) -2 =0} \\\\

:\implies \sf{ 2 \bigg( -8 \bigg) + a\bigg(4\bigg) + b\bigg( -2\bigg) -2 =0} \\\\

:\implies \sf{ -16 + 4a -2b-2 =0 } \\\\

:\implies \sf{   \bigg(4a -2b-18 =0\bigg)\longrightarrow Eq.2} \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Adding \: Eq.1 \:and\:2 \: we \: get, \::}}\\

\boxed{\begin{array}{cccc}\\ \sf{3a} & \sf{\cancel{+2b}} &\sf{-3}&\sf{=0} \\\\ \sf{4a}&\sf{\cancel{-2b}} & \sf{-18} & \sf{=0} \\\\ ---&---&--- \\\\ \sf{7a}& \:\:&\sf{-21}&\sf{=0}\end{array}}\\\\

:\implies \sf{7a - 21 = 0}\\

:\implies \sf{a = 3}\\

⠀⠀⠀⠀⠀⠀\underline {\sf{\star\:Now \: By \: Substituting \: the \:  \: Value\:of\:a\:in\:Eq.1\: \::}}\\

:\implies \sf{3(3) +2b -3 = 0}\\

:\implies \sf{2b  = -6}\\

:\implies \sf{b  = -3}\\

Hence ,

⠀⠀⠀⠀⠀\therefore \underline { \mathrm { The\:Value \:of\:a\:is\:\bf{3}  \: }}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀\therefore \underline {\mathrm { The\:Value \:of\:b\:is\:\bf{-3}  \: }}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions