Math, asked by Anonymous, 10 months ago

\huge\underline\mathfrak\blue{Question\:-}


If sinØ + cosØ = √3, prove that tanØ + cotØ = 1


<marquee> No spam ❌​

Answers

Answered by ITZWildBoy
29

Check the attachment!!

Attachments:
Answered by Anonymous
17

To Prove:

tanØ + cotØ = 1 , if sinØ + cosØ = √3

Proof:

Given,

sinØ + cosØ = √3

Squaring on both sides,

we get

{(sin (\phi) + cos (\phi) )}^{2}= {(\sqrt{3})}^{2}

But,

{(a+b)}^{2}={a}^{2}+{b}^{2}+2ab

Therefore,

=>{sin}^{2}(\phi)+{cos}^{2}(\phi) +2sin(\phi)cos(\phi)=3

But,

{sin}^{2} (\phi) + {cos}^{2} (\phi)  =1

Therefore,

=> 1 +2sin (\phi) cos (\phi) =3

=>2sin (\phi) cos (\phi)=3-1=2

=>sin(\phi)cos(\phi)=\frac{2}{2}=1

On Cross multiplication,

we get,

=>\frac{1}{sin(\phi)cos(\phi)}=1

But, we can replace

{sin}^{2}(\phi)+{cos}^{2}(\phi)=1

Therefore,

We get,

=>\frac{{sin}^{2}(\phi)+{cos}^{2}(\phi)}{sin(\phi)cos(\phi)}=1

=>\frac{{sin}^{2}(\phi)}{sin(\phi)cos(\phi)}+\frac{{cos}^{2}(\phi)}{sin(\phi)cos(\phi)}=1

=>tan(\phi)+ cot(\phi) = 1

Hence, proved

Similar questions