Math, asked by Anonymous, 5 hours ago

 \huge \underline\mathfrak\color{lime}question


 \frac{ \sin(a) }{ \cos(a) } + \frac{ \tan(a) }{ \cot(a) } = \frac{ \sec(a) }{ \sin(a) }

No Spam!

Requirements to write this answer:
1) No Spam
2) No cheating
3) Good luck! ​

Answers

Answered by Anonymous
28

Question:-

  • Solve the following problem

Answer:-

  • The value of alpha ( α ) is 45°

Explanation:-

Given that:-

\bullet \; {\underline{\boxed{\bf{ \frac{\sin \alpha }{\cos \alpha } + \frac{\tan \alpha }{\cot \alpha } = \frac{\sec \alpha }{\sin \alpha } }}}}

To Find:-

  • The value of alpha ( a )

Required Solution :-

─ Now let's re - write what we have

\longrightarrow \sf \dfrac{\sin \alpha }{\cos \alpha } + \dfrac{\tan \alpha }{\cot \alpha } = \dfrac{\sec \alpha }{\sin \alpha }

─ Evaluating further we get

\longrightarrow \sf \tan \alpha + \dfrac{\tan \alpha }{\dfrac{1}{\tan \alpha } } = \dfrac{\sec \alpha }{\dfrac{1}{\sec \alpha } }

\longrightarrow \sf \tan \alpha + \tan \alpha  \; . \; \dfrac{\tan \alpha }{1} = \sec \alpha \; . \; \dfrac{\sec \alpha }{1}

\longrightarrow \sf tan \alpha  +  \tan^{2}  \alpha = \sec^2 \alpha  

\longrightarrow \sf \tan \alpha = \sec^2 \alpha - \tan^2\alpha

\longrightarrow \sf \tan \alpha = 1

\longrightarrow \sf \tan \alpha = \tan ( 45 )

─ Comparing both the sides and dropping the tangent function

\longrightarrow \rm {\red{\underline{\underline{The \; value \; of \;\alpha = ( 45 ) \degree }}}}

Henceforth:-

  • The value of alpha ( α ) is equal to 45°

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\:\dfrac{sina}{cosa}  + \dfrac{tana}{cota}  = \dfrac{seca}{sina}

can be rewritten as using

\boxed{\tt{ tanx =  \frac{sinx}{cosx}}} \:  \:  \\  \\ \boxed{\tt{ cotx =  \frac{1}{tanx}}} \\  \\ \boxed{\tt{ secx =  \frac{1}{cosx}}}

So, we have

\rm :\longmapsto\:tana +  {tan}^{2}a = \dfrac{1}{sina \: cosa}

can be further rewritten as

\rm :\longmapsto\:tana +  {tan}^{2}a = \dfrac{ {sin}^{2}a +  {cos}^{2}a}{sina \: cosa}

\rm :\longmapsto\:tana +  {tan}^{2}a = \dfrac{ {sin}^{2}a}{sina \: cosa}  + \dfrac{ {cos}^{2}a }{sina \: cosa}

\rm :\longmapsto\:tana +  {tan}^{2}a = \dfrac{sina}{cosa}  + \dfrac{cosa}{sina}

\rm :\longmapsto\:tana +  {tan}^{2}a = tana + cota

\rm :\longmapsto\: {tan}^{2}a = cota

\rm :\longmapsto\: {tan}^{2}a = \dfrac{1}{tana}

\rm :\longmapsto\: {tan}^{3}a = 1

\rm\implies \:tana = 1

\rm\implies \:tana = tan\dfrac{\pi}{4}

We know,

\boxed{\tt{ tanx = tany  \: \rm\implies \:\sf x = n\pi + y \: \forall \: n \in \: Z}}

So, using this identity, we get

\purple{\bf\implies \:a = n\pi + \dfrac{\pi}{4} \:  \:  \:  \: \forall \: n \in \: Z}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions