Math, asked by Braɪnlyємρєяσя, 4 months ago



 \huge \underline \mathfrak \pink{Hey :) \: Questions \: }


If Q tan theta = p, then find the value of Psin theta - Qcos theta / Psin theta + Q cos theta

REQUIRED QUALITY ANSWER✔​

Answers

Answered by muskan474941
3

Answer:

REFER TO ATTACHMENT HOPE IT HELPS!!

Attachments:
Answered by sujatakadali
3

Step-by-step explanation:

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

\displaystyle \sf{ \tan \theta = \frac{p}{q} }

TO DETERMINE

\displaystyle \sf{ \frac{p \sin \theta - q \cos \theta}{ p \sin \theta + q \cos \theta} }

CALCULATION

\displaystyle \sf{ \frac{p \sin \theta - q \cos \theta}{ p \sin \theta + q \cos \theta} }

\sf{Dividing \: numerator \: and \: denominator \: both \: by \: \cos \theta }

= \displaystyle \sf{ \frac{p \: \frac{\sin \theta}{\cos \theta} - q\: \frac{\cos \theta}{\cos \theta} }{ p \: \frac{\sin \theta}{\cos \theta} + q\: \frac{\cos \theta}{\cos \theta} } }

= \displaystyle \sf{ \frac{p \tan \theta - q }{ p \tan \theta + q } }

= \displaystyle \sf{ \frac{p \times \frac{p}{q} - q }{ p \times \frac{p}{q} + q } }

= \displaystyle \sf{ \frac{ \frac{ {p}^{2} - {q}^{2} }{q} }{ \frac{ {p}^{2} + {q}^{2} }{q} }}

= \displaystyle \sf{ \frac{ { {p}^{2} - {q}^{2} } }{ {p}^{2} + {q}^{2} }}

━━━━━━━━━━━━━━━━

Similar questions