☹️
Question : If cosØ + cos²Ø = 1 then prove that sin²Ø + sin⁴Ø = 1.
No spam ❌
Answers
Answered by
52
Answer:
sin⁴ Ø + sin² Ø = 1 [ Proved ]
Explanation:
Given :
cos Ø + cos² Ø = 1
Rewrite as :
cos Ø = 1 - cos² Ø
Now using 1 - cos² Ø = sin² Ø
cos Ø = sin² Ø
Squaring on both side :
cos² Ø = sin⁴ Ø
Again using cos² Ø = 1 - sin² Ø
1 - sin² Ø = sin⁴ Ø
sin⁴ Ø + sin² Ø = 1
Hence proved .
Answered by
24
Answer:
/* Here I am using A instead of Phi. */
Given cosA + cos²A = 1
=> cosA + 1-sin²A = 1
=> cosA = 1-1+sin²A
=> cosA= sin²A ---(1)
Now,
LHS = sin²A+ sin⁴A
= sin²A + (sin²A)²
= sin²A + (cosA)² /* From(1)*/
= sin²A + cos²A
= 1
= RHS
•••♪
Similar questions