Math, asked by Anonymous, 18 days ago

\huge\underline\mathrm\red{Question:-}
\displaystyle \lim_{x \to 2} \frac{x^2-4}{x-2} . find the value of x ​

Answers

Answered by xxblackqueenxx37
36

Question :-

 \sf \:  =  \:  \displaystyle \lim_{x \to 2} \frac{ {x}^{2}  - 4}{x - 2} find the value of x

Solution :-

 \sf \: applying \:  the  \: formula \:  =  {x}^{2} -  {a}^{2}  = (x - a)(x + a )

 \sf \:  =  \:  \displaystyle \lim_{x \to 2} \frac{ {x}^{2}  - 4}{x - 2}

 \sf \:  =  \:  \: \displaystyle \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2}

 \sf \: cancel \: out \: the \: common \: term \:

 \sf \:  =  \:  \: \displaystyle \lim_{x \to 2}  \frac{{ (\cancel{x-2}})(x + 2)}{ \: (\cancel{x - 2})}

 \sf \:  = \displaystyle \lim_{x \to 2} \: (x + 2) = 2

therefore the value of x = 2

_____________________________________

 \sf \: substituting \: x = 2 \: into \: the \: (1) \: expression \:

 \sf \:  = \displaystyle \lim_{x \to 2} \: (x + 2) = 4

value of expression = 4

Similar questions