Math, asked by kamalhajare543, 1 month ago


\huge{\underline{\mathtt{\red{Q}\pink{U}\green{E}\blue{S}\purple{T}\orange{I}\red{0}\pink{N}}}}


\dashrightarrow \ \sf \dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!}

No Spam

Spammer Go Away​

Answers

Answered by ajr111
20

Answer:

\mathrm{\dfrac{1-n^2}{n!}\ or\ -\dfrac{n^2-1}{n!}}

Step-by-step explanation:

Given :

\mathrm{\dfrac{1}{n!} - \dfrac{1}{(n-1)!}  - \dfrac{1}{(n-2)!} }

To find :

The value of the given expression

Solution :

\longmapsto \mathrm{\dfrac{1}{n!} - \dfrac{1}{(n-1)!}  - \dfrac{1}{(n-2)!} }

Multiplying n to denominator and numerator to second term and n(n-1) to third term, we get,

\implies \mathrm{\dfrac{1}{n!} - \dfrac{n}{n(n-1)!}  - \dfrac{n(n-1)}{n(n-1)(n-2)!} }

We know that,

\boxed{\mathrm{x! = x.(x-1).(x-2)...3.2.1}}

Thus,

\implies \mathrm{\dfrac{1}{n!} - \dfrac{n}{n!}  - \dfrac{n(n-1)}{n!} }

\implies \mathrm{\dfrac{1-n-n(n-1)}{n!}}

\implies \mathrm{\dfrac{1-\not{n}-n^2+\not{n}}{n!}}

\implies \mathrm{\dfrac{1-n^2}{n!}}

\therefore \Bigg| \overline{\underline{\boxed{\mathbf{\dfrac{1}{n!} - \dfrac{1}{(n-1)!}  - \dfrac{1}{(n-2)!} = \dfrac{1-n^2}{n!}}}}}\Bigg|

Hope it helps!!

Similar questions
History, 1 month ago