Math, asked by kamalhajare543, 1 month ago


\huge{\underline{\mathtt{\red{Q}\pink{U}\green{E}\blue{S}\purple{T}\orange{I}\red{0}\pink{N}}}}


\dashrightarrow \ \sf \dfrac{1}{n!} \ - \ \dfrac{1}{(n - 1)!} \ - \ \dfrac{1}{(n - 2)!}


No Spam please. ​

Answers

Answered by Sanchodelrio12
0

Answer:

1/n(n-1)(n-2)! -1/(n-1)(n-2)! -1/(n-2)! =0

1(n-2)! [1/n(n-1) -1/(n-1) -1] =0

taking LCM

1-n-n(n-1)/n(n-1)=0

1-n-n^2+n/n(n-1)=0

-(n^2-1^2)/n(n-1)

-(n-1)(n+1)/n(n-1)

-(n+1)/n

Hope this helped ya buddy.

Answered by shardakuknaa
1

Answer:

Answer:

2) (n+1)-n

Step-by-step explanation:

\begin{gathered}( {n}^{2} + 1) - {n}^{2} \\ = {n}^{2} + 1 - {n}^{2} \\ = 1 \\ \\ and \: (n + 1) - n \\ = n + 1 - n \\ = 1\end{gathered}

(n

2

+1)−n

2

=n

2

+1−n

2

=1

and(n+1)−n

=n+1−n

=1

Similar questions