Math, asked by Anonymous, 5 months ago


   \huge\underline{ \sf \color{red}{Question:-}}
The diameter of a circular park is 75 m. A 3.5 m wide road runs on
the inside around it. Find the cost of constructing the road at ₹200
per square metre.



\:  \:  \bull{Any~mod/star/serious~user ~ plz ~answer}

Answers

Answered by IdyllicAurora
54

Answer :-

\:\\\large{\underbrace{\sf{Firstly,\;let's\;understand\;the\;concept\;used\;:-}}}

Here the concept of Areas of Circle has been used. We see first we can find out the area of the circular park. Then we can add the width of the road to the radius of the park and find the whole area including path and park. From this whole area we can subtract the area of path. The we can multiply this area with the rate.

Let's do it !!

_________________________________________________

Formula Used :-

\:\\\large{\boxed{\sf{Areas\;of\;Circle\;=\;\bf{\pi r^{2}}}}}

\:\\\large{\boxed{\sf{Radius\;of\;whole\;plot_{(including\;park\;and\;path)}\;=\;\bf{Radius\;of\;Park\;+\;Width\;of\;Road}}}}

\:\\\large{\boxed{\sf{Area\;of\;Path\;=\;\bf{Area\;of\;whole\;plot\;-\;Area\;of\;Park}}}}

\:\\\large{\boxed{\sf{Total\;cost\;of\;constructing\;the\;road\;=\;\bf{Rate_{(in\:per\:m^{2})}\:\times\:Area\;of\;Path}}}}

_________________________________________________

Question :-

The diameter of a circular park is 75 m. A 3.5 m wide road runs on the inside around it. Find the cost of constructing the road at ₹200 per square metre.

_________________________________________________

Solution :-

Given,

» Diameter of circular park = 75 m

» Radius of circular park = ½ × 75 = 37.5 m

» Width of the road = 3.5 m

» Rate of construction of road = Rs. 200 per m²

_________________________________________________

~ For the Area of Park :-

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:Areas\;of\;Circle_{(Park)}\;=\;\bf{\pi r^{2}}}}

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:Areas\;of\;Circle_{(Park)}\;=\;\bf{\dfrac{22}{7}\:\times\: (37.5)^{2}\:\;=\:\;\underline{\underline{4419.64\;\;m^{2}}}}}}

_________________________________________________

~ For the Radius of whole plot :-

\:\\\qquad\large{\sf{\rightarrow\;\;\:Radius\;of\;whole\;plot_{(including\;park\;and\;path)}\;=\;\bf{Radius\;of\;Park\;+\;Width\;of\;Road}}}

\:\\\qquad\large{\sf{\rightarrow\;\;\:Radius\;of\;whole\;plot_{(including\;park\;and\;path)}\;=\;\bf{37.5\;+\;3.5\:\;=\;\:\underline{\underline{41\;\;m}}}}}

_________________________________________________

~ For the Area of whole plot :-

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:Areas\;of\;Circle_{(whole\;plot)}\;=\;\bf{\pi r^{2}}}}

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:Areas\;of\;Circle_{(whole\;plot)}\;=\;\bf{\dfrac{22}{7}\:\times\: (41)^{2}\:\;=\:\;\underline{\underline{5283.14\;\;m^{2}}}}}}

_________________________________________________

~ For the Area of Path :-

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:Area\;of\;Path\;=\;\bf{Area\;of\;whole\;plot\;-\;Area\;of\;Park}}}

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:Area\;of\;Path\;=\;\bf{5283.14\;-\;4419.64\;\:=\;\:\underline{\underline{863.5\;\;m^{2}}}}}}

_________________________________________________

~ For the Total Cost of Constructing the Road :-

\:\\\qquad\large{\sf{:\Longrightarrow\;\;\:Total\;cost\;of\;constructing\;the\;road\;=\;\bf{Rate_{(in\:per\:m^{2})}\:\times\:Area\;of\;Path}}}

\:\\\qquad\large{\sf{:\Longrightarrow\;\;\:Total\;cost\;of\;constructing\;the\;road\;=\;\bf{200\;\times\;863.5\:\;=\;\:\underline{\underline{Rs.\;\;172700}}}}}

\:\\\large{\underline{\underline{\rm{Thus,\;total\;cost\;of\;construction\;of\;road\;is\;\;\boxed{\bf{Rs.\;\;172700}}}}}}

_________________________________________________

Evaluation from the Attachment :-

From attachment we see that, the brown shaded region us the road which is to be constructed around the park and the green shaded portion is the park. Now if we subtract the area of green shaded portion from the area of whole bigger circular region, we can get the area of path.

_________________________________________________

More to know :-

Area of Square = (Side)²

Area of Rectangle = Length × Breadth

Area of Triangle = ½ × Base × Height

Area of Parallelogram = Base × Height

Perimeter of Square = 4 × Side

Perimeter of Rectangle = 2 × (Length + Breadth)

Perimeter of Circle = 2πr

Attachments:
Answered by VinCus
72

Given:-

  •  \sf \: Diameter = 75 \: m

  •  \sf \: Radius \:  = 37.5 \: m

  •  \sf \: Outer  \: radius = 37.5 + 3.5 = 41 \: m

Solution:-

 { \underline{ \boxed{ \sf{Outer \:  area  \: from  \: center =\pi  {r}^{2}  }}}}</p><p>

  \bullet= \sf \: 3.14 \times {41}^{2}

\bullet \sf \:  = 5278.34 \:  {m}^{2}

{ \underline{ \boxed{ \sf{Inner  \: area \:  =  \: \pi {r}^{2} }}}}

 \bullet = \sf \: 3.14 \times{37.5}^{2}

 \bullet\sf \:  =  \: 4,415.625  \: m {}^{2}

{ \underline{ \boxed{ \sf{Area  \: of \:  round = Outer  \: area \:   - \:  Inner \:area}}}}

\bullet \sf \: =  (5278.34 ) - (4,415.625)

\bullet \sf \:  = 862.715   \: {m}^{2}

 { \underline{ \boxed{ \sf{Cost \:  of \:  construction \:  = Rs.2.00 \:  {m}^{2} }}}}

{ \underline{ \boxed{ \sf{cost \: of \: construction \:  = Rs.2.00 \times 862.715}}}}

\bullet \sf \:  = Rs. \: 1,725.43

The cost of constructing road is Rs.

1,725.43..

Similar questions