Math, asked by sia1234567, 3 months ago


 \huge \underline{\sf\red{question}}
 \bigstar \:  \underline\bold{evaluate \: the \: following \: limit  -  }
_______________________
 \bold{ \star \: do \: not \: spam}
 \bold{\star \: give \: right \: answer}


Attachments:

Answers

Answered by assingh
23

Topic :-

Limits

To Find :-

\displaystyle \sf{\lim_{x\to a}\dfrac{\cos x- \cos a}{\cot x- \cot a}}

Concept Used :-

L' Hôpital's Rule

It is applicable while calculating limits of indeterminate forms of type 0/0 or ∞/∞.

\displaystyle \sf {If\:\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0\:or\:\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=\infty,}

\displaystyle \sf{then\:\lim_{x\to a}\dfrac{f(x)}{g(x)}=\lim_{x\to a}\dfrac{f'(x)}{g'(x)}}

\displaystyle \sf{provided\:that\:g'(x)\neq 0\:and\:limit \:\lim_{x\to a}\dfrac{f'(x)}{g'(x)}\:exists.}

Solution :-

\displaystyle \sf{\lim_{x\to a}\dfrac{\cos x- \cos a}{\cot x- \cot a}}

Put x = a to check its indeterminate form.

\sf{\dfrac{\cos a- \cos a}{\cot a- \cot a}}

\sf{\dfrac{0}{0}}

Indeterminate form of given expression is 0/0, hence, L' Hôpital's Rule can be applied here.

Applying L' Hôpital's Rule,

\displaystyle \sf{\lim_{x\to a}\dfrac{f(x)}{g(x)}=\lim_{x\to a}\dfrac{f'(x)}{g'(x)}}

\displaystyle \sf{\lim_{x\to a}\dfrac{\cos x- \cos a}{\cot x- \cot a}=\lim_{x\to a}\dfrac{\dfrac{d}{dx}(\cos x- \cos a)}{\dfrac{d}{dx}(\cot x- \cot a)}}

\displaystyle \sf{\lim_{x\to a}\dfrac{\dfrac{d}{dx}(\cos x- \cos a)}{\dfrac{d}{dx}(\cot x- \cot a)}=\lim_{x\to a}\dfrac{\dfrac{d}{dx}(\cos x)- \dfrac{d}{dx}(\cos a)}{\dfrac{d}{dx}(\cot x)- \dfrac{d}{dx}(\cot a)}}

\sf {\left(\because \dfrac{d(f\pm g)}{dx}=\dfrac{d(f)}{dx}\pm \dfrac{d(g)}{dx} \right)}

'cos a' and 'cot a' act as constant with respect to 'x'.

\displaystyle \sf{\lim_{x\to a}\dfrac{\dfrac{d}{dx}(\cos x)-0}{\dfrac{d}{dx}(\cot x)-0}}

\sf {\left(\because \dfrac{d(k)}{dx}=0,where\:k\:is\:a\:constant.\right)}

\displaystyle \sf{\lim_{x\to a}\dfrac{-\sin x}{\dfrac{d}{dx}(\cot x)}}

\sf {\left(\because \dfrac{d(\cos x)}{dx}=-\sin x \right)}

\displaystyle \sf{\lim_{x\to a}\dfrac{-\sin x}{-\csc^2x}}

\sf {\left(\because \dfrac{d(\cot x)}{dx}=-\csc^2x \right)}

\displaystyle \sf{\lim_{x\to a}\dfrac{\sin x}{\dfrac{1}{\sin^2x}}}

\sf{\left(\because \csc x=\dfrac{1}{\sin  x}\right)}

\displaystyle \sf{\lim_{x\to a}\sin^3x}

Put value of the limit that is x = a.

\sf{\sin^3a}

Answer :-

\displaystyle \underline{\boxed{\sf{\lim_{x\to a}\dfrac{\cos x- \cos a}{\cot x- \cot a}=sin^3a}}}

Answered by AbhinavRocks10
11

❏Question:-

\begin{gathered} \sf \: find \: the \: value \: of \: \: \red{\lim_{x \to a} } \bigg \{\green{ \frac{ \cos x - \cos a}{ \cot x - \cot a} } \bigg \}\\ \end{gathered}

❏Answer :-

\boxed{ \red{\lim_{x \to a} } \bigg \{\green{ \frac{ \blue{\cos x - \cos a}}{ \cot x - \cot a} } \bigg \} \: \: = { \sin}^{3} a} \: \:

❏Solution :-

We have ,

\begin{gathered} \implies \pink{ \lim_{x \to a}} \bigg \{ \blue{ \frac{ \cos x - \cos a}{ \cot x - \cot a} }\bigg \} \\ \\ \bf \: Taking \: limit \: \\ \\ \implies \sf \frac{ \cos a - \cos a}{ \cot a - \cot a} \\ \\ \implies \: \frac{0}{0} \: \{ \sf \green{ indeterminate \: form }\} \\ \\ \bf \: hence \: \\ \bf \red{Apply \: L } \: - Hospital \: rule \: \\ \to \sf \: differentiate \: numenator \: and \: denomenator \: \\ \sf \: \: \: \: \: \: both \: \\ \\ \to \: \red{\lim_{x \to a} }\green{ \frac{ \cos x - \cos a}{ \cot x - \cot a} } \\ \: \\ \bf after \: differentiation \: \\ \\ \to \: \blue{\lim_{x \to a} }\pink{ \frac{ - \sin x }{ - { \csc}^{2}x } } \\ \because \: \boxed{ \csc \theta = \frac{1}{ \sin \theta} } \\ \therefore \\ \to \: \purple{\lim_{x \to a} } \: \: \red{ \frac{ \sin x }{ \frac{1}{ { \sin}^{2}x } } }\: \\ \\ \to \: {\lim_{x \to a} } \: \: \red{ { \sin}^{3} x} \: \\ \bf \red{ Taking \: limit \: } \\ \\ \to \: { \sin}^{3} a \\ \\ \boxed{ \red{\lim_{x \to a} } \bigg \{\green{ \frac{ \cos x - \cos a}{ \cot x - \cot a} } \bigg \} \: \: = { \sin}^{3} a}\end{gathered}

\sf{\blue{\underline{\underline{\orange{HENCE\; VERIFIED}}}}}

  • \sf @AbhinavRocks10
Similar questions