Math, asked by AestheticSky, 4 months ago

\huge{\underline{\underline{\bf Question}}}

If the median of the distribution given above is 28.5, find the values of x and y.

No spam ❌
No copy-paste ❌

Step-by-step explanation ✅

Correct answer will be marked as Brainliest ⭐

Good luck ​

Attachments:

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Frequency distribution table is as below

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c}\sf Class\: interval&\sf Frequency\: (f)&\sf \: cumulative \: frequency\\\frac{ \qquad \qquad}{}&\frac{\qquad \qquad}{}\\\sf 0 - 10&\sf 5&\sf5\\\\\sf 10 - 20 &\sf x&\sf5 + x\\\\\sf 20-30 &\sf 20&\sf25 + x\\\\\sf 30 - 40&\sf 15&\sf40 + x\\\\\sf 40-50&\sf y&\sf40 + x + y\\\ \\  \sf 50 - 60&\sf 5&\sf45 + x + y\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}\\\sf & \sf \sum f = 60& \end{array}}\end{gathered}\end{gathered}\end{gathered}

Now,

Given that

\sf \:  \sum \: f \:  =  \: 60

\rm :\implies\:45 + x + y = 60

\bf :\implies\:x + y = 15 -  -  - (1)

We know,

The Formula of Median is

 \:  \:  \:  \:  \:  \: \boxed{ \sf M= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}}

Here,

  • l denotes lower limit of median class

  • h denotes width of median class

  • f denotes frequency of median class

  • cf denotes cumulative frequency of the class preceding the median class

  • N denotes sum of frequency

According to the question,

  • Median is 28.5

So,

  • median class is 20-30

  • l = 20,

  • h = 10,

  • f = 20,

  • cf = cf of preceding class = 5 + x

  • N/2 = 30

By substituting all the given values in the formula,

\rm :\longmapsto\:28.5 = 20 + \dfrac{30 - (5 + x)}{20}  \times 10

\rm :\longmapsto\:28.5 - 20 = \dfrac{30 - 5 - x}{2}

\rm :\longmapsto\:8.5 = \dfrac{25 - x}{2}

\rm :\longmapsto\:17 = 25 - x

\bf\implies \:x \:  =  \: 8 -  -  - (2)

On substituting, the value of 'x = 8' in equation (1) we get

\rm :\longmapsto\:8 + y = 15

\bf\implies \:y \:  =  \: 7

Additional Information :-

\begin{gathered} \dashrightarrow\sf Mode = x_{k} + \bigg \{h \times \dfrac{(f_{k} - f_{k - 1})}{(2f_{k} - _{k - 1} - f_{k + 1}} \bigg \} \\ \end{gathered}

Mean using direct method :-

\dashrightarrow\sf Mean = \dfrac{ \sum f_i x_i}{ \sum f_i}

Mean using Assumed mean method :-

\dashrightarrow\sf Mean =A \:  +  \:  \dfrac{ \sum f_i d_i}{ \sum f_i}

And

\dashrightarrow\sf Mean = \: A \:  +  \:  \dfrac{ \sum f_i u_i}{ \sum f_i} \:  \times  \: h

Similar questions