if then find the value of
Don't spam ❌
No plagiarism ❌
Step by step explanation ✅
Perfect answer will be marked as Brainliest ⭐
Good luck !!
Answers
Answered by
54
Solution
Given :-
Find :-
- Value of .
Explanation
We Have,
➠ sin θ - cos θ = 1/2
Squaring both sides
➠ (sin θ - cos θ )² = (1/2)²
➠ sin² θ + cos² θ - 2sin θ.cos θ = 1/4
We Know,
- sin² θ + cos² θ = 1
➠ 1 - 2sin θ.cos θ = 1/4
➠ 2sin θ.cos θ = 1 -1/4
➠ 2sin θ.cos θ = (4 - 1)/3
➠ 2sin θ.cos θ = 3/4
➠ 2sin θ.cos θ = 3/4 ____________(1)
We Know,
- (sin θ + cos θ)² = sin² θ + cos² θ + 2sin θ.cos θ
keep all above Values
➠ (sin θ + cos θ)² = 1 + 3/4
➠ (sin θ + cos θ)² = (4 + 3)/4
➠ (sin θ + cos θ)² = 7/4
Take squarroot of both side
➠ √(sin θ + cos θ)² = √(7/4)
➠ sin θ + cos θ = √7/2
Now, take reciprocal of both side of all terms
➠ 1/(sin θ + cos θ) = 2/√7
Hence
- Value of 1/(sin θ + cos θ) will be = 2/√7
___________________
Answered by
5
Given :-
Find :-
Explanation
We Have,
➠ sin θ - cos θ = 1/2
Squaring both sides
➠ (sin θ - cos θ )² = (1/2)²
➠ sin² θ + cos² θ - 2sin θ.cos θ = 1/4
We Know,
sin² θ + cos² θ = 1
➠ 1 - 2sin θ.cos θ = 1/4
➠ 2sin θ.cos θ = 1 -1/4
➠ 2sin θ.cos θ = (4 - 1)/3
➠ 2sin θ.cos θ = 3/4
➠ 2sin θ.cos θ = 3/4 ____________(1)
We Know,
(sin θ + cos θ)² = sin² θ + cos² θ + 2sin θ.cos θ
keep all above Values
➠ (sin θ + cos θ)² = 1 + 3/4
➠ (sin θ + cos θ)² = (4 + 3)/4
➠ (sin θ + cos θ)² = 7/4
Take squarroot of both side
➠ √(sin θ + cos θ)² = √(7/4)
➠ sin θ + cos θ = √7/2
Now, take reciprocal of both side of all terms
➠ 1/(sin θ + cos θ) = 2/√7
Hence
Value of 1/(sin θ + cos θ) will be = 2/√7
_________________
Similar questions