Math, asked by Anonymous, 4 months ago

\huge{\underline{\underline{\boxed{\sf{\purple{ǫᴜᴇsᴛɪᴏɴ }}}}}}

SinA + CosA = 2
SinA - CosA = ?​

Answers

Answered by yashaswabhagor
2

Answer:

ANSWER

sinA+cosA=

2

(given)

Squaring both sides, we have

(sinA+cosA)

2

=(

2

)

2

sin

2

A+cos

2

A+2sinAcosA=2

(1−cos

2

A)+(1−sin

2

A)+2sinAcosA=2(Using identity:sin

2

θ+cos

2

θ=1)

1−cos

2

A+1−sin

2

A+2sinAcosA=2

⇒2−(cos

2

A+sin

2

A−2sinAcosA)=2

⇒2−(sinA−cosA)

2

=2

⇒(sinA−cosA)

2

=2−2

⇒(sinA−cosA)

2

=0

⇒sinA−cosA=0

Answered by HèrøSk
85

\huge\bf{Answer}

\sf(sinA + cosA)=2 \\\sf Squaring  \:  \: on \:  both \:  sides ,we  \: have\\ \sf (sinA + cosA) ^{2}  = 2 ^{2}  \\ \sf sin ^{2}A  + cos ^{2} A + 2sinAcosA = 4 \\\sf  1 - cos ^{2}A  +1 - sin ^{2} A + 2sinAcosA = 4 \\\sf 2   - (cos^{2}A + sin ^{2} A -  2sinAcosA) = 4  \\ \sf(cosA  - sin A) ^{2}   = 4 - 2 \\ \sf(cos A  - sin A) ^{2}   = 2 \\ \sf(cos A  - sin A)   =  \sqrt{ 2 } \\  \\ \boxed{\therefore \sf(cos A  - sin A)   =  \sqrt{ 2 }}

Similar questions