Math, asked by Anonymous, 4 months ago

\huge{\underline{\underline{\boxed{\sf{\purple{ǫᴜᴇsᴛɪᴏɴ}}}}}}

If \: sinθ \:  =  \frac{a}{b}  \: \\  then \: prove \: that \: (secθ + tanθ) =  \sqrt{ \frac{b + a}{b - a} }

Answers

Answered by Anonymous
79

Solution:-

Given

 \rm \implies \:  \sin \theta =  \dfrac{a}{b}

We have to proof

 \implies \sec \theta \:  +  \tan \theta =  \sqrt{  \rm\dfrac{b + a}{b - a} }

Now take

 \rm \implies \:  \sin \theta =  \dfrac{a}{b}  =  \dfrac{p}{h}

Using Pythagoras theorem we will find Base(x)

 \rm \implies \:  {h}^{2}  =  {x}^{2}  +  {p}^{2}

 \rm \implies \:  {b}^{2}  =   {x}^{2}  +  {a}^{2}

 \rm \implies \:  {x}^{2}  =  {b}^{2}  -  {a}^{2}

 \rm \implies \: x =  \sqrt{ {b}^{2}  -  {a}^{2} }

Now we know that

 \rm \implies \:  \sec \theta =  \dfrac{h}{x}  =  \dfrac{b}{ \sqrt{ {b}^{2}  -  {a}^{2} } }

 \implies \rm \tan \theta =  \dfrac{p}{x}  =  \dfrac{a}{ \sqrt{ {b}^{2} -  {a}^{2}  }  }

Now take

 \rm \implies \sec \theta \:  +  \tan \theta

 \rm \implies \:    \dfrac{b}{ \sqrt{ {b}^{2}  -  {a}^{2} } }  +  \dfrac{a}{ \sqrt{ {b}^{2} -  {a}^{2}  }  }

 \rm \implies \:  \dfrac{b + a}{ \sqrt{ {b}^{2} -  {a}^{2}  } }

 \rm \implies \:  \dfrac{b + a}{ \sqrt{ {b - a}   } \sqrt{b + a}  }

 \rm \implies \:  \dfrac{b + a}{ \sqrt{ {b - a}   } \sqrt{b + a}  }  \times  \dfrac{ \sqrt{b + a} }{ \sqrt{b + a} }

 \rm \implies \:  \dfrac{b + a \sqrt{b + a} }{b + a \sqrt{b - a} }

\rm \implies \:  \dfrac{ \cancel{b + a} \sqrt{b + a} }{ \cancel{b + a} \sqrt{b - a} }

\rm \implies \:  \dfrac{ \sqrt{b + a} }{ \sqrt{b - a} }  =  \sqrt{ \dfrac{b + a}{b - a} }

Hence proved

Answered by misscutie94
108

Answer:

Given :-

➙ sin\theta = \dfrac{a}{b}

Prove That :-

➙ (sec\theta + tan\theta = \sqrt{\dfrac{b + a}{b - a}}

Solution :-

L.H.S = (sec\theta + tan\theta)

\dfrac{1}{cos\theta} + \dfrac{sin\theta}{cos\theta}

\dfrac{1 + sin\theta}{cos\theta}

\dfrac{1 + sin\theta}{\sqrt{1 - {sin}^{2}\theta}}

\dfrac{(1 + \dfrac{a}{b})}{\sqrt{1 + (\dfrac{a}{b})^{2}}}

\dfrac{(\dfrac{1}{1} + \dfrac{a}{b})}{\sqrt{\dfrac{1}{1} - \dfrac{a²}{b²}}}

\dfrac{(\dfrac{b + a}{b})}{\sqrt{\dfrac{b² - a²}{b²}}}

\dfrac{(b + a)}{{\sqrt{b + a}}{\sqrt{b - a}}}

\dfrac{\sqrt{(b + a)}}{\sqrt{(b - a)}}

\sqrt{\dfrac{b + a}{b - a}}

R.H.S

\leadsto \large\green{\underline{{\boxed{\textbf{PROVED}}}}}

Similar questions