Math, asked by Anonymous, 3 months ago


\huge \underline{ \: \:   \:  \:  \underline{\color {red}\bf QUESTION}  \:  \:  \: \: }


Find the area between the curves y = x² + 5 and y = x³ and the lines x = 1 and x = 2​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

The given curves are

\rm :\longmapsto\:y =  {x}^{2}  + 5 -  -  - (1)

\rm :\longmapsto\:y =  {x}^{3}

and

boundary conditions

\rm :\longmapsto\:x = 1 \:  \: and \:  \: x = 2

So,

required area between the curves is

\rm :\longmapsto\:I \:  = \displaystyle\int_1^2 \tt \:(y_1 - y_2)dx

 \rm \:  \:  =  \:  \: \displaystyle\int_1^2 \tt \:( {x}^{2} + 5 -  {x}^{3})

\rm \:  \:  =  \:  \: \bigg(\dfrac{ {x}^{3} }{3} + 5x  - \dfrac{ {x}^{4} }{4} \bigg)_1^2

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \displaystyle\int \tt \: {x}^{n}dx = \dfrac{ {x}^{n + 1} }{n + 1} + c\bigg \}}

\rm \:  \:  =  \:  \: \bigg(\dfrac{8}{3}  + 10 - \dfrac{16}{4} \bigg) - \bigg(\dfrac{1}{3}  + 5 - \dfrac{1}{4} \bigg)

\rm \:  \:  =  \:  \: \bigg(\dfrac{8}{3}  + 10 - 4 \bigg) - \bigg(\dfrac{1}{3}  + 5 - \dfrac{1}{4} \bigg)

\rm \:  \:  =  \:  \: \bigg(\dfrac{8}{3}  +6 \bigg) - \bigg(\dfrac{1}{3}  + 5 - \dfrac{1}{4} \bigg)

\rm \:  \:  =  \:  \: \dfrac{8}{3}  - \dfrac{1}{3}   +  \dfrac{1}{4}  + 1

\rm \:  \:  =  \:  \: \dfrac{8 - 1}{3}   +  \dfrac{1 + 4}{4}

\rm \:  \:  =  \:  \: \dfrac{7}{3}   +  \dfrac{5}{4}

\rm \:  \:  =  \:  \: \dfrac{28 + 15}{12}

\rm \:  \:  =  \:  \: \dfrac{43}{12} \: square \: units

Attachments:
Answered by saraharmy123
14

ur answer is in the attachment...

hope it helps.

Attachments:
Similar questions