If n is an odd integer, then show that n
²– 1 is divisible by 8.
Answers
Answered by
7
» We know that,
odd number in the form of (2Q +1) where Q is a natural number ,
so, n² -1 = (2Q + 1)² -1
= 4Q² + 4Q + 1 -1
now , checking :
Q = 1 then,
4Q² + 4Q = 4(1)² + 4(1) = 4 + 4 = 8 , it is divisible by 8.
Q =2 then,
4Q² + 4Q = 4(2)² + 4(2) =16 + 8 = 24, it is also divisible by 8 .
Q =3 then,
4Q² + 4Q = 4(3)² + 4(3) = 36 + 12 = 48 , divisible by 8
It is concluded that 4Q² + 4Q is divisible by 8 for all natural numbers.
Similar questions
Social Sciences,
5 months ago
Social Sciences,
5 months ago
Math,
10 months ago
Psychology,
10 months ago
Math,
1 year ago
Math,
1 year ago
Math,
1 year ago