Math, asked by Anonymous, 1 year ago

\huge{\underline{\underline{\mathbb{QuesTion:-}}}}
<font color="purple">
What is the density of water at a depth where pressure is 80 atm,given that its density at the surface is 1.03×10³ kg/m³???

Answers

Answered by ParamPatel
0

Answer:

FLUID DYNAMICS

Step-by-step explanation:

★ DENSITY IS NOT A CHANGING quantity.

» SO ; DENSITY REMAINS SAME THROUGH OUT THE FLUID .

SO ; DENSITY OF WATER AT DEPTH = 1.03 × 10³ KG / M³

[ same as Surface ]

★ DENSITY IS INDEPENDENT OF PRESSURE AND DEPTH ★

Answered by AnandMPC
4

 \huge{\red{\star}} {\blue{\huge{\textsf{Hello Mate}}}} \huge{\red{\star}}

Given:

  • Pressure of water at a certain depth = 80 \: atm

  • At the surface of water, density of water (d) = 1.013 \times  {10}^{13} \:  \:   \frac{kg}{ {m}^{3} }  \\

To Find:

  • Density of water at a certain depth

 \huge{\red{\star}} {\blue{\underline{\huge{\textsf{Solution}}}}} \huge{\red{\star}}

Let Volume at surface of water =  \frac{m}{ d_{1} }  \\

Let volume at a certain depth =  \frac{m}{ d_{2} } \\

Change in volume =

 v_{2} -   v_{1} \\  \\  =  \frac{m}{ d_{2} } -  \frac{m}{ d_{1} }   \\  \\  = m( \frac{1}{ d_{2} }  -  \frac{1}{ d_{1} } ) \\  \\

We know Bulk modulus (B) =

 \frac{change  \: \: in \ \: pressure  \: \times  \: volume}{change  \:  \: in \:  \: volume}  \\

Compressibility of water =  \frac{1} {b}  \\  \\  =  \frac{change \:  \: in \:  \: volume \:  \: }{change \:  \: in \:   \:  pressure \:   \times  \: volume}   \\  \\  = 45.8 \times  {10}^{ - 11 \:} pascals

Let change in pressure = dp

Now,

45.8 \times  {10}^{ - 11}  =  \frac{m( \frac{1}{ d_{2} } -  \frac{1}{ d_{1}} ) }{dp \times  \frac{m}{ d_{1} } }  \\  \\  45.8 \times  {10}^{ - 11}  =  \frac{ d_{1} }{dp}( \frac{1}{ d_{2}  }    - \frac{1}{ d_{1} } ) \\  \\  45.8 \times  {10}^{ - 11}  =  \frac{1}{dp} (1 -  \frac{ d_{1} }{d _{2} } ) \\  \\

Substitute all the given values,

45.8 \times  {10}^{ - 11}  = 1 -  (\frac{1.03  \: \times  \:  {10}^{3} }{ d_{2} } ) \:  \times  \:  \frac{1}{80 \times 1.013 \:  \times \:   {10}^{5} }  \\  \\ by \:  \: solving \\  \\  d_{2} =  1.034 \times  {10}^{3}  \:  \:  \frac  {kg}{ {m}^{3} }

 \huge{\blue{\star}} {\red{\underline{\huge{\textsf{Hope It Helps}}}}} \huge{\blue{\star}}

Similar questions